scholarly journals T1-Weighted Dynamic Contrast-Enhanced MRI Is a Noninvasive Marker of Epidermal Growth Factor Receptor vIII Status in Cancer Stem Cell–Derived Experimental Glioblastomas

2016 ◽  
Vol 37 (6) ◽  
pp. E49-E51 ◽  
Author(s):  
L.S. Politi ◽  
G. Brugnara ◽  
A. Castellano ◽  
M. Cadioli ◽  
L. Altabella ◽  
...  
2012 ◽  
Vol 72 (10) ◽  
pp. 2657-2671 ◽  
Author(s):  
Catherine A. Del Vecchio ◽  
Kristin C. Jensen ◽  
Ryan T. Nitta ◽  
A. Hunter Shain ◽  
Craig P. Giacomini ◽  
...  

2021 ◽  
Vol 12 (5) ◽  
Author(s):  
Jun Yu ◽  
Qianwen Zheng ◽  
Zhiran Li ◽  
Yunhao Wu ◽  
Yangbo Fu ◽  
...  

AbstractSpermatogonia transit-amplifying (TA) divisions are crucial for the differentiation of germline stem cell daughters. However, the underlying mechanism is largely unknown. In the present study, we demonstrated that CG6015 was essential for spermatogonia TA-divisions and elongated spermatozoon development in Drosophila melanogaster. Spermatogonia deficient in CG6015 inhibited germline differentiation leading to the accumulation of undifferentiated cell populations. Transcriptome profiling using RNA sequencing indicated that CG6015 was involved in spermatogenesis, spermatid differentiation, and metabolic processes. Gene Set Enrichment Analysis (GSEA) revealed the relationship between CG6015 and the epidermal growth factor receptor (EGFR) signaling pathway. Unexpectedly, we discovered that phosphorylated extracellular regulated kinase (dpERK) signals were activated in germline stem cell (GSC)-like cells after reduction of CG6015 in spermatogonia. Moreover, Downstream of raf1 (Dsor1), a key downstream target of EGFR, mimicked the phenotype of CG6015, and germline dpERK signals were activated in spermatogonia of Dsor1 RNAi testes. Together, these findings revealed a potential regulatory mechanism of CG6015 via EGFR signaling during spermatogonia TA-divisions in Drosophila testes.


Cancers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 22 ◽  
Author(s):  
Yipu Fan ◽  
Weikang Xue ◽  
Melitta Schachner ◽  
Weijiang Zhao

Malignant gliomas are the most aggressive forms of brain tumors; whose metastasis and recurrence contribute to high rates of morbidity and mortality. Glioma stem cell-like cells are a subpopulation of tumor-initiating cells responsible for glioma tumorigenesis, metastasis, recurrence and resistance to therapy. Epidermal growth factor receptor (EGFR) has been reported to be dysregulated in most cancers, including gliomas and its functions are closely linked to initiating tumor metastasis and a very poor prognosis. In search for compounds that may reduce the tumorigenic potential of gliomas/glioblastomas honokiol attracted our attention. Honokiol, purified from the bark of traditional Chinese herbal medicine Magnolia species, is beneficial in vitro and in animal models via a variety of pharmacological effects, including anti-inflammatory, anti-angiogenetic, anti-arrhythmic and antioxidant activities, as well as anti-proliferative and proapoptotic effects in a wide range of human cancer cells. However, its effects on glioma cells are unknown. Here, we used different concentrations of honokiol in treating U251 and U-87 MG human glioma/glioblastoma cells in cell culture. Results showed that honokiol inhibited glioma cell viability and colony formation and promoted apoptosis. It also inhibited glioma cell migration/proliferation and invasion. In addition, honokiol promoted apoptosis and reduced Bcl-2 expression, accompanied by increase in Bax expression. Honokiol reduced expression of EGFR, CD133 and Nestin. Moreover, honokiol inhibited the activation of both AKT and ERK signaling pathways, increased active caspase-3 level and reduced phosphorylation of STAT3. U-87 MG xenografts in nude mice and in immunotolerant zebrafish yolk sac showed that honokiol inhibits tumor growth and metastasis. Altogether, results indicate that honokiol reduces tumorigenic potentials, suggesting hopes for honokiol to be useful in the clinical management of glioma/glioblastoma.


Sign in / Sign up

Export Citation Format

Share Document