scholarly journals Carbon dioxide sequestration in power plant Ca-rich ash waste deposits

Oil Shale ◽  
2021 ◽  
Vol 38 (1) ◽  
pp. 65
Author(s):  
K Kirsimäe ◽  
A Konist ◽  
K Leben ◽  
R Mõtlep ◽  
T Pihu
2012 ◽  
Vol 59 (3) ◽  
pp. 343-360 ◽  
Author(s):  
Andrzej Witkowski ◽  
Mirosław Majkut

The aim of this paper is to analyze various CO2 compression processes for postcombustion CO2 capture applications for 900 MW pulverized coal-fired power plant. Different thermodynamically feasible CO2 compression systems will be identified and their energy consumption quantified. A detailed thermodynamic analysis examines methods used to minimize the power penalty to the producer through integrated, low-power compression concepts. The goal of the present research is to reduce this penalty through an analysis of different compression concepts, and a possibility of capturing the heat of compression and converting it to useful energy for use elsewhere in the plant.


Elements ◽  
2007 ◽  
Vol 3 (3) ◽  
pp. 179-184 ◽  
Author(s):  
S. J. Friedmann

Author(s):  
Srikanth Ravipati ◽  
Mirella Simoes Santos ◽  
Ioannis G. Economou ◽  
Amparo Galindo ◽  
George Jackson ◽  
...  

Author(s):  
Raghavendra Ragipani ◽  
Sankar Bhattacharya ◽  
Akkihebbal K. Suresh

Research pertaining to carbon dioxide sequestration via mineral carbonation has gained significant attention, primarily due to the stability of sequestered \ce{CO2} over geological time scales. Use of industry-derived alkaline wastes...


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Bernadette R. Cladek ◽  
S. Michelle Everett ◽  
Marshall T. McDonnell ◽  
Matthew G. Tucker ◽  
David J. Keffer ◽  
...  

AbstractA vast source of methane is found in gas hydrate deposits, which form naturally dispersed throughout ocean sediments and arctic permafrost. Methane may be obtained from hydrates by exchange with hydrocarbon byproduct carbon dioxide. It is imperative for the development of safe methane extraction and carbon dioxide sequestration to understand how methane and carbon dioxide co-occupy the same hydrate structure. Pair distribution functions (PDFs) provide atomic-scale structural insight into intermolecular interactions in methane and carbon dioxide hydrates. We present experimental neutron PDFs of methane, carbon dioxide and mixed methane-carbon dioxide hydrates at 10 K analyzed with complementing classical molecular dynamics simulations and Reverse Monte Carlo fitting. Mixed hydrate, which forms during the exchange process, is more locally disordered than methane or carbon dioxide hydrates. The behavior of mixed gas species cannot be interpolated from properties of pure compounds, and PDF measurements provide important understanding of how the guest composition impacts overall order in the hydrate structure.


1980 ◽  
Vol 23 (176) ◽  
pp. 238-246 ◽  
Author(s):  
Koji AKAGAWA ◽  
Terushige FUJII ◽  
Tadashi SAKAGUCHI ◽  
Kosuke KAWABATA ◽  
Keisuke OGURA ◽  
...  

2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Bilal Hassan ◽  
Oghare Victor Ogidiama ◽  
Mohammed N. Khan ◽  
Tariq Shamim

A thermodynamic model and parametric analysis of a natural gas-fired power plant with carbon dioxide (CO2) capture using multistage chemical looping combustion (CLC) are presented. CLC is an innovative concept and an attractive option to capture CO2 with a significantly lower energy penalty than other carbon-capture technologies. The principal idea behind CLC is to split the combustion process into two separate steps (redox reactions) carried out in two separate reactors: an oxidation reaction and a reduction reaction, by introducing a suitable metal oxide which acts as an oxygen carrier (OC) that circulates between the two reactors. In this study, an Aspen Plus model was developed by employing the conservation of mass and energy for all components of the CLC system. In the analysis, equilibrium-based thermodynamic reactions with no OC deactivation were considered. The model was employed to investigate the effect of various key operating parameters such as air, fuel, and OC mass flow rates, operating pressure, and waste heat recovery on the performance of a natural gas-fired power plant with multistage CLC. The results of these parameters on the plant's thermal and exergetic efficiencies are presented. Based on the lower heating value, the analysis shows a thermal efficiency gain of more than 6 percentage points for CLC-integrated natural gas power plants compared to similar power plants with pre- or post-combustion CO2 capture technologies.


Sign in / Sign up

Export Citation Format

Share Document