Energy and Exergy Analyses of a Power Plant With Carbon Dioxide Capture Using Multistage Chemical Looping Combustion

2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Bilal Hassan ◽  
Oghare Victor Ogidiama ◽  
Mohammed N. Khan ◽  
Tariq Shamim

A thermodynamic model and parametric analysis of a natural gas-fired power plant with carbon dioxide (CO2) capture using multistage chemical looping combustion (CLC) are presented. CLC is an innovative concept and an attractive option to capture CO2 with a significantly lower energy penalty than other carbon-capture technologies. The principal idea behind CLC is to split the combustion process into two separate steps (redox reactions) carried out in two separate reactors: an oxidation reaction and a reduction reaction, by introducing a suitable metal oxide which acts as an oxygen carrier (OC) that circulates between the two reactors. In this study, an Aspen Plus model was developed by employing the conservation of mass and energy for all components of the CLC system. In the analysis, equilibrium-based thermodynamic reactions with no OC deactivation were considered. The model was employed to investigate the effect of various key operating parameters such as air, fuel, and OC mass flow rates, operating pressure, and waste heat recovery on the performance of a natural gas-fired power plant with multistage CLC. The results of these parameters on the plant's thermal and exergetic efficiencies are presented. Based on the lower heating value, the analysis shows a thermal efficiency gain of more than 6 percentage points for CLC-integrated natural gas power plants compared to similar power plants with pre- or post-combustion CO2 capture technologies.

Author(s):  
Bilal Hassan ◽  
Tariq Shamim ◽  
Ahmed F. Ghoniem

A thermodynamic model and parametric analysis of a natural gas fired power plant with carbon dioxide (CO2) capture using multi-stage chemical looping combustion (CLC) are presented. CLC is an innovative concept and an attractive option to capture CO2 with a significantly lower energy penalty than other carbon-capture technologies. The principal idea behind CLC is to split the combustion process into two separate steps (redox reactions) carried out in two separate reactors: an oxidation reaction and a reduction reaction, by introducing suitable metal oxide which acts as an oxygen-carrier that circulates between the two reactors. In this study, an Aspen Plus model was developed by employing the conservation of mass and energy for all the components of the CLC system. In the analysis, equilibrium based thermodynamic reactions with no oxygen-carrier deactivation were considered. The model was employed to investigate the effect of various key operating parameters such as air, fuel and oxygen carrier (OC) mass flow rates, operating pressure, and waste heat recovery on the performance of a natural gas fired power plant with multi-stage CLC. Results of these parameters on the plant efficiency are presented. The analysis shows efficiency gain of more than 6% over that of conventional power plant with CO2 capture technologies when CLC is integrated with the power plant.


2021 ◽  
Author(s):  
Basavaraja Revappa Jayadevappa

Abstract Operation of power plants in carbon dioxide capture and non-capture modes and energy penalty or energy utilization in such operations are of great significance. This work reports on two gas fired pressurized chemical-looping combustion power plant lay-outs with two inbuilt modes of flue gas exit namely, with carbon dioxide capture mode and second mode is letting flue gas (consists carbon dioxide and water) without capturing carbon dioxide. In the non-CCS mode, higher thermal efficiencies of 54.06% and 52.63% efficiencies are obtained with natural gas and syngas. In carbon capture mode, a net thermal efficiency of 52.13% is obtained with natural gas and 48.78% with syngas. The operating pressure of air reactor is taken to be 13 bar for realistic operational considerations and that of fuel reactor is 11.5 bar. Two power plant lay-outs developed based combined cycle CLC mode for natural gas and syngas fuels. A single lay-out is developed for two fuels with possible retrofit for dual fuel operation. The CLC Power plants can be operated with two modes of flue gas exit options and these operational options makes them higher thermal efficient power plants.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Oghare Victor Ogidiama ◽  
Mohammad Abu Zahra ◽  
Tariq Shamim

High energy penalty and cost are major obstacles in the widespread use of CO2 capture techniques for reducing CO2 emissions. Chemical looping combustion (CLC) is an innovative means of achieving CO2 capture with less cost and low energy penalty. This paper conducts a detailed techno-economic analysis of a natural gas-fired CLC-based power plant. The power plant capacity is 1000 MWth gross power on a lower heating value basis. The analysis was done using Aspen Plus. The cost analysis was done by considering the plant location to be in the United Arab Emirates. The plant performance was analyzed by using the cost of equipment, cost of electricity, payback period, and the cost of capture. The performance of the CLC system was also compared with a conventional natural gas combined cycle plant of the same capacity integrated with post combustion CO2 capture technology. The analysis shows that the CLC system had a plant efficiency of 55.6%, electricity cost of 5.5 cents/kWh, payback time of 3.77 years, and the CO2 capture cost of $27.5/ton. In comparison, a similar natural gas combined cycle (NGCC) power plant with CO2 capture had an efficiency of 50.6%, cost of electricity of 6.1 cents/kWh, payback period of 4.57 years, and the capture cost of $42.9/ton. This analysis shows the economic advantage of the CLC integrated power plants.


2021 ◽  
Author(s):  
Sivaji Seepana ◽  
Aritra Chakraborty ◽  
Kannan Kaliyaperumal ◽  
Guruchandran Pocha Saminathan

Abstract The chemical looping combustion (CLC) process is a promising technology for capturing CO2 at the source due to its inherent separation of flue gas from nitrogen. In this regard, the present study is focused on the development of various Rankine cycle based CLC power plant layouts for gaseous and solid fuels. To evaluate the performance of these CLC based cycles, a detailed thermodynamic analysis has been carried out with natural gas (NG)& synthesis gas as gaseous fuels and lignite as solid fuel. For lignite based power production, in-site gasification CLC (iG-CLC) for syngas generation and CLC based combustion process employed. The Energy analysis showed that NG based power plant has a net efficiency of 40.44% with CO2 capture and compression which is the highest among all cases while the same for syngas based power plant is 38.06%. The difference in net efficiency between NG and syngas power plants is attributed to the variation in CO2 compression cost. For lignite based iG-CLC power plant layout, the net efficiency of 39.64% is observed which is higher than syngas fuelledCLC power plant. This shows the potential of CLC technology for power generation applications with or without CO2 capture.


2019 ◽  
Vol 198 ◽  
pp. 111856 ◽  
Author(s):  
Alberto Navajas ◽  
Teresa Mendiara ◽  
Víctor Goñi ◽  
Adrián Jiménez ◽  
Luis M. Gandía ◽  
...  

Author(s):  
Hongguang Jin ◽  
Xiaosong Zhang ◽  
Hui Hong ◽  
Wei Han

In this paper, a novel gas turbine cycle integrating methanol decomposition and the chemical-looping combustion (CLC) is proposed. The system study on two methanol-fuelled power plants, the new gas turbine cycle with CLC combustion, and a chemically intercooled gas turbine cycle, has been investigated with the aid of the exergy analysis (EUD methodology). In the proposed system, methanol fuel is decomposed into syngas mainly containing H2 and CO by recovering low-temperature thermal energy from an intercooler of the air compressor. After the decomposition of methanol, the resulting product of syngas is divided into two parts: the most part reacting with Fe2O3, is sent into the CLC subsystem, and the other part is introduced into a supplement combustor to enhance the inlet temperatures of turbine to 1100–1500°C. As a result, the new methanol-fuelled gas turbine cycle with CLC had a breakthrough in performance, with at least about 10.7 percentage points higher efficiency compared to the chemically intercooled gas turbine cycle with recovery of CO2 and is environmentally superior due to the recovery of CO2. This new system can achieve 60.6% net thermal efficiency with CO2 separation. The promising results obtained here indicated that this novel gas turbine cycle with methanol-fuelled chemical looping combustion could provide a promising approach of both effective use of alternative fuel and recovering low-grade waste heat, and offer a technical probability for CLC in applying into the advanced gas turbine with high temperatures above 1300°C.


Sign in / Sign up

Export Citation Format

Share Document