scholarly journals Non-linear energy harvesting based power splitting relaying in full-duplex AF and DF relaying networks: system performance analysis

2020 ◽  
Vol 69 (4) ◽  
pp. 368
Author(s):  
D-H Ha ◽  
T N Nguyen ◽  
D-V Phan ◽  
T Phu ◽  
M Tran ◽  
...  
Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 448 ◽  
Author(s):  
Tan N. Nguyen ◽  
Minh Tran ◽  
Thanh-Long Nguyen ◽  
Duy-Hung Ha ◽  
Miroslav Voznak

In this work, the system performance analysis of cooperative networks with power splitting protocol-based energy harvesting (EH) over Nakagami-m/Rayleigh channels is proposed. The exact-form expressions of the outage probability (OP) and ergodic capacity (EC) is demonstrated and derived. Using the proposed probabilistic models for wireless channels, we derive OP and EC as a research result. Finally, we conduct Monte Carlo simulations to verify a system performance analysis of the proposed system. The research results demonstrate the effectiveness of EH in the network over Nakagami-m/Rayleigh channels.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2472 ◽  
Author(s):  
Tianwen Yuan ◽  
Mingang Liu ◽  
Yizhi Feng

In this paper, we study the outage and throughput performance for the simultaneous wireless information and power transfer (SWIPT) cooperative decode-and-forward (DF) communication systems. The hybrid receiver that uses both time switching (TS) and power splitting (PS) methods for energy harvesting (EH) and information decoding (ID), and the piece-wise linear EH model that captures the non-linear input-output characteristic of the EH circuit, are considered. We present exact analytical expressions of the outage probability (OP) and throughput, which are expressed as single definite integral on finite interval and can be easily evaluated, for the systems in Rayleigh fading channel. For further simplicity of calculation, we derive novel and closed-form approximate expressions of the OP and throughput. The impact of different system parameters on the system performance is investigated. Numerical results show the high accuracy of the proposed closed-form approximate expressions especially in the region of higher signal-to-noise ratio (SNR). It is also shown that the system performance is greatly overestimated when the ideal linear EH model is used instead of the practical non-linear EH model. A different result to the non-hybrid receiver with both linear EH model and non-linear EH model that there exists an optimal location to minimize the OP for the hybrid receiving relay node with non-linear EH model is also demonstrated.


Author(s):  
Van-Duc Phan ◽  
Phu Tran Tin ◽  
Minh Tran ◽  
Tran Thanh Trang

<p>In the last time, the system performance of the energy harvesting relay network has been considered in many studies. In this paper, we propose and investigate the outage probability (OP) of the Decode-and-Forward (DF) Energy Harvesting (EH) Full-Duplex (FD) Relaying network in Power Splitting Protocol (PS) using MRC Technique with the presence of the direct link. In the first stage, the integral form of the OP is derived in two cases with and without the presence of the direct link. After that, we analyze the influence of main system parameters on the OP and comparison between two cases with and without the presence of the direct link. Finally, the results show that all simulation and analytical results match well with each other based on the Monte Carlo verification simulation.</p>


Author(s):  
Phu Tran Tin ◽  
Le Anh Vu ◽  
Tan N. Nguyen ◽  
Thanh-Long Nguyen

<span>Cooperative communication has been recently proposed in wireless communication systems for exploring the inherent spatial diversity in relay channels. In this work, we investigate the system performance of the energy harvesting full-duplex (FD) decode-and-forward (DF) hybrid time switching-power splitting relaying TSR-PSR (TPSR) protocol relaying network. In the selection scheme, the best user selection protocol is proposed and investigated. Mainly we derive the closed-form expression for the outage probability, system throughput and the symbol error rate (SER) of the system. Numerical results are also presented by the Monte Carlo simulation to validate the theoretical analysis in connection with the all possible parameters in the comparison between TSPR, TSR and PSR cases. The research results show that TPSR case is better than the others in term of outage probability and SER.</span>


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Phu Tran Tin ◽  
Phan Van-Duc ◽  
Tan N. Nguyen ◽  
Le Anh Vu

In this paper, we investigate the full-duplex (FD) decode-and-forward (DF) cooperative relaying system, whereas the relay node can harvest energy from radiofrequency (RF) signals of the source and then utilize the harvested energy to transfer the information to the destination. Specifically, a hybrid time-power switching-based relaying method is adopted, which leverages the benefits of time-switching relaying (TSR) and power-splitting relaying (PSR) protocols. While energy harvesting (EH) helps to reduce the limited energy at the relay, full-duplex is one of the most important techniques to enhance the spectrum efficiency by its capacity of transmitting and receiving signals simultaneously. Based on the proposed system model, the performance of the proposed relaying system in terms of the ergodic capacity (EC) is analyzed. Specifically, we derive the exact closed form for upper bound EC by applying some special function mathematics. Then, the Monte Carlo simulations are performed to validate the mathematical analysis and numerical results.


Sign in / Sign up

Export Citation Format

Share Document