scholarly journals User selection protocol in DF cooperative networks with hybrid TSR-PSR protocol based full-duplex energy harvesting over rayleigh fading channel: system performance analysis

Author(s):  
Phu Tran Tin ◽  
Le Anh Vu ◽  
Tan N. Nguyen ◽  
Thanh-Long Nguyen

<span>Cooperative communication has been recently proposed in wireless communication systems for exploring the inherent spatial diversity in relay channels. In this work, we investigate the system performance of the energy harvesting full-duplex (FD) decode-and-forward (DF) hybrid time switching-power splitting relaying TSR-PSR (TPSR) protocol relaying network. In the selection scheme, the best user selection protocol is proposed and investigated. Mainly we derive the closed-form expression for the outage probability, system throughput and the symbol error rate (SER) of the system. Numerical results are also presented by the Monte Carlo simulation to validate the theoretical analysis in connection with the all possible parameters in the comparison between TSPR, TSR and PSR cases. The research results show that TPSR case is better than the others in term of outage probability and SER.</span>

Author(s):  
Van-Duc Phan ◽  
Phu Tran Tin ◽  
Minh Tran ◽  
Tran Thanh Trang

<p>In the last time, the system performance of the energy harvesting relay network has been considered in many studies. In this paper, we propose and investigate the outage probability (OP) of the Decode-and-Forward (DF) Energy Harvesting (EH) Full-Duplex (FD) Relaying network in Power Splitting Protocol (PS) using MRC Technique with the presence of the direct link. In the first stage, the integral form of the OP is derived in two cases with and without the presence of the direct link. After that, we analyze the influence of main system parameters on the OP and comparison between two cases with and without the presence of the direct link. Finally, the results show that all simulation and analytical results match well with each other based on the Monte Carlo verification simulation.</p>


Author(s):  
Van-Duc Phan ◽  
Phu Tran Tin ◽  
Minh Tran ◽  
Tran Thanh Trang

In this paper, we investigate the system performance in term of outage probability (OP) and intercept probability (IP) user selection protocols in full-duplex (FD) power splitting protocol (PSP) energy harvesting (EH) cooperative network over the Rayleigh fading channel. In this network, security and privacy issues are significant due to the possible eavesdropping by surrounding users. In this case, the security performance and reliable performance are represented by outage probability (OP) and intercept probability (IP), respectively. The power-splitting energy harvesting protocol is applied in our analysis. We rigorously derive the closed-form expressions of both OP and IP of the system and study the effect of various parameters. Finally, the Monte Carlo simulation results are also performed to confirm the correctness of all theoretical analysis derived.


Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 448 ◽  
Author(s):  
Tan N. Nguyen ◽  
Minh Tran ◽  
Thanh-Long Nguyen ◽  
Duy-Hung Ha ◽  
Miroslav Voznak

In this work, the system performance analysis of cooperative networks with power splitting protocol-based energy harvesting (EH) over Nakagami-m/Rayleigh channels is proposed. The exact-form expressions of the outage probability (OP) and ergodic capacity (EC) is demonstrated and derived. Using the proposed probabilistic models for wireless channels, we derive OP and EC as a research result. Finally, we conduct Monte Carlo simulations to verify a system performance analysis of the proposed system. The research results demonstrate the effectiveness of EH in the network over Nakagami-m/Rayleigh channels.


2018 ◽  
Vol 2 (1) ◽  
pp. 18
Author(s):  
Miroslav Voznak ◽  
Hoang Quang Minh Tran ◽  
N. Tan Nguyen

In recent years, harvesting energy from radio frequency (RF) signals has drawn significant research interest as a promising solution to solve the energy problem. In this paper, we analyze the effect of the interference noise on the wireless energy harvesting performance of a decode-and-forward (DF) relaying network. In this analysis, the energy and information are transferred from the source to the relay nodes in the delay-limited transmission and Delay-tolerant transmission modes by two methods: i) time switching protocol and ii) power splitting protocol. Firstly, due to the constraint of the wireless energy harvesting at the relay node, the analytical mathematical expressions of the achievable throughput, outage probability and ergodic capacity of both schemes were proposed and demonstrated. After that, the effect of various system parameters on the system performance is rigorously studied with closed-form expressions for system throughput, outage probability, and ergodic capacity. Finally, the analytical results are also demonstrated by Monte-Carlo simulation. The results show that the analytical mathematical and simulated results agree with each other.  This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


2021 ◽  
pp. 82-90
Author(s):  
Kehinde O. Odeyemi ◽  
◽  
Pius A. Owolawi

In this paper, the performance of an Energy Harvesting (EH) enabled full-duplex cooperative decode-and-forward (DF) relaying system is investigated over the Fisher-Snedecor F-fading channel. The system energy-constrained relay unit utilizes time-switching relay protocol for scavenging energy from the source signal and information transmission to the destination. To quantify the system performance, the exact analytical closed-form expression for the system outage probability is derived, and then used to obtain the analytical expression for the average throughput of delay-limited transmission mode. Moreover, the exact closed-form expression for the system Ergodic capacity is derived through which the average delay-tolerant throughput is determined for the system. In addition, the results demonstrate the impact of fading and shadowing severity on the system performance. It also is noticeable from the results that the performance of system is strongly affected by the loop back interference from the relay node. Finally, the accuracy of the derived analytical expressions is then validated through the Monte-Carlo simulation.


Author(s):  
Dinh-Thuan Do

In this paper, we consider one-way  relay with energy harvesting system based on power beacon (PB), in which the relay node harvests transmitted power from the PB station to forward signals to destination. We also analyse the relay network model with amplify-and-forward (AF) protocol for information cooperation and Power Splitting-based Relaying (PSR) protocol for power transfer. In particular, the outage probability and optimal energy harvesting (EH) power splitting fraction of novel scheme in are presented. We obtain analytical closed-form expression of  optimal energy harvesting (EH) power splitting fraction to minimize the outage probability of system. Using numerical and analytical simulations, the performances of different cases are presented and discussed.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jinglan Ou ◽  
Hangchuan Shi ◽  
Liubin Wang ◽  
Rui Ma ◽  
Haowei Wu

Simultaneous wireless information and power transfer (SWIPT) is a major breakthrough in the field of low-power wireless information transmissions. In this paper, the secrecy performance of the SWIPT-enabled relay network with full-duplex destination-aided jamming is assessed, where both the power-splitting (PS) and time-switching (TS) schemes at the relay are considered with the linear and nonlinear energy harvesting models. The relay harvests energy from the confidential signal and artificial noise sent by the source and destination, respectively, and forwards the amplified signal to the destination, in the presence of an eavesdropper. The analytical closed-form expressions of the connection outage probability (COP), secrecy outage probability (SOP), and transmission outage probability (TOP) for PS- and TS-based schemes are derived, and the closed-form expression of the lower bound of ergodic secrecy capacity (ESC) is calculated. The asymptotic-form expressions of the COP, SOP, TOP, and ESC are further analyzed to capture the valuable information in the high SNR regime. Numerical results verify the correctness of analytical results, reveal the effects of the PS/TS ratio, and transmit the signal-to-noise ratio on secrecy performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Phu Tran Tin ◽  
Phan Van-Duc ◽  
Tan N. Nguyen ◽  
Le Anh Vu

In this paper, we investigate the full-duplex (FD) decode-and-forward (DF) cooperative relaying system, whereas the relay node can harvest energy from radiofrequency (RF) signals of the source and then utilize the harvested energy to transfer the information to the destination. Specifically, a hybrid time-power switching-based relaying method is adopted, which leverages the benefits of time-switching relaying (TSR) and power-splitting relaying (PSR) protocols. While energy harvesting (EH) helps to reduce the limited energy at the relay, full-duplex is one of the most important techniques to enhance the spectrum efficiency by its capacity of transmitting and receiving signals simultaneously. Based on the proposed system model, the performance of the proposed relaying system in terms of the ergodic capacity (EC) is analyzed. Specifically, we derive the exact closed form for upper bound EC by applying some special function mathematics. Then, the Monte Carlo simulations are performed to validate the mathematical analysis and numerical results.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3946 ◽  
Author(s):  
Chunling Peng ◽  
Fangwei Li ◽  
Huaping Liu ◽  
Guozhong Wang

A joint resource allocation algorithm to minimize the system outage probability is proposed for a decode-and-forward (DF) two-way relay network with simultaneous wireless information and power transfer (SWIPT) under a total power constraint. In this network, the two sources nodes exchange information with the help of a passive relay, which is assumed to help the two source nodes’ communication without consuming its own energy by exploiting an energy-harvesting protocol, the power splitting (PS) protocol. An optimization framework to jointly optimize power allocation (PA) at the source nodes and PS at the relay is developed. Since the formulated joint optimization problem is non-convex, the solution is developed in two steps. First, the conditionally optimal PS ratio at the relay node for a given PA ratio is explored; then, the closed-form of the optimal PA in the sense of minimizing the system outage probability with instantaneous channel state information (CSI) is derived. Analysis shows that the optimal design depends on the channel condition and the rate threshold. Simulation results are obtained to validate the analytical results. Comparison with three existing schemes shows that the proposed optimized scheme has the minimum system outage probability.


Sign in / Sign up

Export Citation Format

Share Document