VERIFICATION OF FINITE-ELEMENT MODEL SPACECRAFT VIA TEST RESULTS

2018 ◽  
Vol 19 (1) ◽  
pp. 8-16
Author(s):  
D.F. Balyakov ◽  
2006 ◽  
Vol 33 (4) ◽  
pp. 395-408 ◽  
Author(s):  
Bino B.S Huns ◽  
Gilbert Y Grondin ◽  
Robert G Driver

Despite the large database of test results for tension and shear block failure in gusset plates, the exact progression of the failure mechanism is not clear. Although current design equations predict the capacity of gusset plates fairly well, it is important for a design equation to not only predict the capacity reliably but also reflect the failure mode accurately. Recent experimental and numerical research has indicated that current design equations do not always predict the failure behaviour accurately. A finite element model was therefore developed to predict the sequence of events that leads to the tear-out of a block of material from a bolted gusset plate in tension. The model was developed to provide a useful tool for studying tension and shear block failure in gusset plates and other structural elements. This paper presents the development of the finite element model and procedure for prediction of tension and shear block failure in gusset plates. Making use of the finite element model, the database of test results is also expanded to include gusset plates with a larger number of transverse lines of bolts than what has been obtained experimentally. A reliability analysis is used to assess several design equations, including the equation adopted in CAN/CSA-S16-01 and a unified equation proposed recently for several types of bolted connections. From this work, a limit states design equation is proposed for gusset plates.Key words: gusset plate, limit states design, reliability, shear rupture, tension rupture, finite element analysis, failure criterion.


2018 ◽  
Vol 38 (2) ◽  
pp. 131-142
Author(s):  
Dan Zhang ◽  
Zhong Tao ◽  
Lei Zhang

A review on the previous studies shows that limited analytical or experimental studies on the low-rise concealed truss shear walls with external columns under monotonic loading have already been conducted. The combination of concealed truss was welded to I-shaped steel frame and flat steel support. Two different aspect ratio composite shear walls were tested under static monotonic loading, and the failure mode, bearing capacity, ductility and stiffness were explored. A finite element model was developed and used to simulate the composite shear walls under constant axial load and lateral loading. The comparison of test results confirmed that the finite element model could predict the behavior of composite shear walls accurately. Meanwhile, stress analyses of the specimens were studied to simulate stress distribution of reinforcement, and to analyze the steel of composite shear wall with external columns at different loading stages. Taken together, this study could be a basis for developing an accurately simplified model.


Author(s):  
Dahua Cai ◽  
Yonghuan Wang ◽  
Jiangtao Zhang ◽  
Lin Yang ◽  
Hua Rong ◽  
...  

For prestressed concrete containment structure, prestress loss is a key factor that affects the performance of containment structure. Therefore, prestressed time-limited aging analysis (TLAA) is essential for containment structures. The main objective of prestressed TLAA is to assess the safety of containment structures after prestress loss occurred over time. This paper takes the in-service containment structure as an example to investigate the method of TLAA for grounted prestressed containment structure. Firstly, it introduces methods for prestressed TLAA. Secondly, a finite element model of containment structure is established to calculate the minimum required value (MRV) of prestress. The numerical model is verified by the pressure test results. Thirdly, prestress loss of tendons is calculated. Finally, the residual prestress of tendons are compared with the MRV of prestress to confirm whether the containment can service in a certain period. This study can provide guidance for goouted prestressed TLAA of containment structures.


2013 ◽  
Vol 416-417 ◽  
pp. 1803-1807
Author(s):  
Qiang Li ◽  
Yan Fang Liu ◽  
Xiang Yang Xu

This paper introduces a combination of testing and finite element simulation for the abnormal vibration of a truck cab in specific speed. Vibration characteristics of the truck is tested. The factors that caused the abnormal vibration of the truck is found. The finite element model is established and the modal analysis is performed, the correctness of the test results is verified, and a reliable finite element model for the follow-up solution is provided. The abnormal vibration was caused by the frequencies of radial force variation which almost equal to the truck natural frequency under the vehicle velocities of 50km/h. The approach described in this paper can be applied to similar vibration problem diagnosis.


Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 247
Author(s):  
Jinlong Zhou ◽  
Linghua Dong ◽  
Weidong Yang

An active rotor with trailing-edge flaps is an effective approach to alleviate vibrations and noise in helicopters. In this study, a compact piezoelectric actuator is proposed to drive trailing-edge flaps. The two groups of piezoelectric stacks accommodated in the actuator operate in opposition, and double-acting output can be realized through the differential motion of these stacks. A theoretical model and a finite element model are established to predict the output capability of this actuator, and structural optimization is performed using the finite element model. A prototype is built and tested on a benchtop to assess its performance. Test results demonstrate that the actuator stiffness reaches 801 N/mm, and its output stroke is up to ± 0.27 mm when subjected to actuation voltage of 120 V. Agreement between measurements and simulations validates the accuracy of the established models. In addition, actuator outputs in failure modes are measured by canceling the supply voltage of one group of piezoelectric stacks. In this condition, the actuator can still generate acceptable outputs, and the initial position of the output end remains unchanged. Simulations and test results reveal that the proposed actuator achieves promising performance, and it is capable to be applied to a helicopter active rotor.


2013 ◽  
Vol 694-697 ◽  
pp. 163-167
Author(s):  
Nan Zheng ◽  
Yi Wang ◽  
Xiao Xia Chen

The static tensile test and the Finite Element Model (FEM) study of the flange repaired cut-out laminates were carried out in this work. The tensile test is focus on the strength of the flange reinforcement panel and unreinforced panel. The FEM studies on the reinforcement and unrepaired structure is focused on simulation of the tensile test. The test results indicated that the strain value decreased as the size of load is. The FEM results indicated that the maximum Mises stress value of the flange repaired panel is decreased by 16.08% than the unreinforced.


Sign in / Sign up

Export Citation Format

Share Document