piezoelectric stacks
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 25)

H-INDEX

8
(FIVE YEARS 2)

2021 ◽  
Vol 11 (24) ◽  
pp. 11872
Author(s):  
Tolera G. Degefa ◽  
Andrzej Wróbel ◽  
Marek Płaczek

The piezoelectric stack is employed as an actuator and a sensor in a variety of technical applications. The dynamic modelling of piezoelectric plates and stack is used to investigate and search for new applications in mechatronics systems that are based on various loading frequencies. Stacks are composed of series of the same size and whose plates feature the same material properties and are layered by dielectric sheets. This enables increased displacements to be achieved while freeing up more space. The major aim of this study was to investigate the feasibility of using differently modulated piezoelectric plates in a single stack. Mathematical modelling and the study of the characteristics of piezoelectric plates, as well as the stack, with respect to various geometrical parameters, enhances the utilization of the plate in mechatronics systems. The work focuses on the ability of piezoelectric stacks to generate complex vibration spectra comprising numerous frequencies. This is accomplished by utilizing different piezoelectric plates in the stack or by stimulating each plate with a distinct carrier frequency. The plate responses at a wide frequency of piezoelectric plates were investigated using several modeling environments and, finally, experimental findings were obtained. In addition to generating the hypothesis of triggering the plate in a single stack with a varied frequency spectrum, the experiment performed was employed for parameter identification. The experiment demonstrated that it is possible to increase the flexibility of systems by employing piezoelectric stacks as a mode of actuation and that piezo stacks can be used in systems that require precise actuation over a wide frequency range.


Author(s):  
Yunlai Shi ◽  
Haichao Sun ◽  
Dingji Cheng ◽  
Jun Zhang ◽  
Yuyang Lin ◽  
...  

This paper presents a hybrid linear actuator using screw clamp operation principle. The actuator mainly consists of a hollow electromagnetic torque motor located between two clamping nuts, two hollow cylindrical shaped piezoelectric stacks symmetrically configured at two ends of the actuator and a feed-screw (also considered as the mover of the actuator) assembled throughout all the parts. The torque motor is symmetrically connected to two clamping nuts via two torsion coupling springs located at either end of the motor spindle. Two piezoelectric stacks can work independently to propel the opposing loads, which effectively take advantage of the anti-compression and non-tensile characteristics of piezoelectric element. The special feature of the actuator is the screw clamp mechanism, the operation of which involves intermittent rotation of two nuts (driven by the torque motor) on a feed-screw to achieve the bi-direction piezoelectric motion accumulation. Furthermore, the application of feed-screw could decrease the actuator’s sensitivity to wear, in order to realize a rigid self-locking and thus ensure the actuator’s holding capacity. A prototype was fabricated and the experimental results show that the no-load speed, maximum thrust, and peak power of the actuator were 20 mm/s, 280 N, and 1.54 W, respectively.


Author(s):  
Olivier Freychet ◽  
Sebastien Boisseau ◽  
Francois Frassati ◽  
Nicolas Garraud ◽  
Pierre Gasnier ◽  
...  

Author(s):  
Xuefeng Ma ◽  
Yingxiang Liu ◽  
Jie Deng ◽  
Shijing Zhang ◽  
Junkao Liu
Keyword(s):  

Author(s):  
Rico Weber ◽  
Samuel Seydel ◽  
Adriaan Spierings ◽  
Andrea Bergamini ◽  
Bart Van Damme ◽  
...  

Abstract Laser-based powder bed fusion of metals (PBF-LB/M) is the most commonly used additive manufacturing process for fabricating complex metal parts by selective, layer-wise melting of metallic powder using a laser beam. This manufacturing technique can easily fabricate parts with complex geometries that cannot be fabricated using conventional manufacturing processes. These parts with complex geometries are generally used by aerospace and space industries, and advancement in functionalization of additive manufactured parts is highly beneficial to these industries. However, the parts constructed using additive manufacturing are monolithic, stiff, and lightweight and hence, they are vulnerable to high amplitude resonant vibrations. This is due to the low damping factor of the materials used and the absence of interfaces and connections that contribute to structural damping in conventional structures. The integration of piezoelectric materials within these structures would enable the control of vibration characteristics. The techniques presented in this study will enable a high level of freedom in the placement of piezoelectric materials and investigate the potential of merging parts constructed using additive manufacturing with piezoelectric materials. Furthermore, a technique to track the stress state during the integration process, which is crucial for the pre-stress evaluation of integrated piezoelectric stacks, is presented and shows characteristics similar to a force cell. Pre-stress is successfully tracked during integration and in some concepts tensile stress onto the piezoelectric material is occurring. Finally, to verify the functionality for potential piezoelectric damping, power conversion was reported with laser vibrometer measurements and FE validation.


Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 247
Author(s):  
Jinlong Zhou ◽  
Linghua Dong ◽  
Weidong Yang

An active rotor with trailing-edge flaps is an effective approach to alleviate vibrations and noise in helicopters. In this study, a compact piezoelectric actuator is proposed to drive trailing-edge flaps. The two groups of piezoelectric stacks accommodated in the actuator operate in opposition, and double-acting output can be realized through the differential motion of these stacks. A theoretical model and a finite element model are established to predict the output capability of this actuator, and structural optimization is performed using the finite element model. A prototype is built and tested on a benchtop to assess its performance. Test results demonstrate that the actuator stiffness reaches 801 N/mm, and its output stroke is up to ± 0.27 mm when subjected to actuation voltage of 120 V. Agreement between measurements and simulations validates the accuracy of the established models. In addition, actuator outputs in failure modes are measured by canceling the supply voltage of one group of piezoelectric stacks. In this condition, the actuator can still generate acceptable outputs, and the initial position of the output end remains unchanged. Simulations and test results reveal that the proposed actuator achieves promising performance, and it is capable to be applied to a helicopter active rotor.


Actuators ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 200
Author(s):  
Xiaofeng Yang ◽  
Jinyan Tang ◽  
Wenxin Guo ◽  
Hu Huang ◽  
Haoyin Fan ◽  
...  

Although the stick-slip principle has been widely employed for designing piezoelectric actuators, there still exits an intrinsic drawback, i.e., the backward motion, which significantly affects its output performances and applications. By analyzing the generation mechanism of backward motion in stick-slip piezoelectric actuators, the elliptical trajectory was employed to design a novel stepping piezoelectric actuator free of backward motion. Accordingly, a prototype of piezoelectric actuator was designed, which utilized a flexure hinge mechanism and two vertically arranged piezoelectric stacks to generate the required elliptical trajectory. The compliance matrix method was used to theoretically analyze the flexure hinge mechanism. The theoretical and measured elliptical trajectories under various phase differences were compared, and the phase difference of 45° was selected accordingly. Under a critical relative gap, output performances of the actuator working under the elliptical trajectory were characterized, and then compared with that obtained under the normal stick-slip driving principle. Experimental results indicated that forward and reverse stepping displacement with completely suppressed backward motion could be achieved when employing the elliptical trajectory, verifying its feasibility. This study provides a new strategy for designing a stepping piezoelectric actuator free of backward motion.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2680
Author(s):  
Seonghun Pyo ◽  
Muhammad Shakeel Afzal ◽  
Youngsub Lim ◽  
Seungjin Lee ◽  
Yongrae Roh

Tonpilz transducers are desirable for their superior performance in underwater target detection and communication applications. Several design schemes to widen their bandwidth have been reported, but these schemes often involve a complex structure or arrangement of additional components. In this study, a simple design is proposed to improve the bandwidth of a multimode Tonpilz transducer by using a non-uniform drive section that consists of piezoelectric stacks of various thicknesses. The efficacy of the design is illustrated with a multimode Tonpilz transducer having three lead zirconate titanate (PZT) stacks of different thicknesses. A new equivalent circuit was developed to analyze the frequency response of the transducer incorporating the non-uniform drive section and was used for rigorous analysis of the effects of varying the position and thickness of the non-uniform stacks on the transmitting characteristics of the transducer. The validity of the design was verified through the fabrication and characterization of a prototype multimode Tonpilz transducer. The developed structure can be readily extended to an arbitrary number of stacks in the Tonpilz transducer with any number of PZT disks in each stack.


2021 ◽  
Vol 92 (4) ◽  
pp. 045008
Author(s):  
Zhangfan Xu ◽  
Song Pan ◽  
Lei Chen ◽  
Zhong Xiao

Actuators ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 68
Author(s):  
Andres Ferrara-Bello ◽  
Pedro Vargas-Chable ◽  
Gerardo Vera-Dimas ◽  
Rafael Vargas-Bernal ◽  
Margarita Tecpoyotl-Torres

This article presents the design and implementation of a micropositioning system actuated by three piezoelectric stacks to control its displacements on XYZ axes. The use of conventional piezoelectric buzzers allows us to reduce fabrication costs. The working or mobile platform is the base for objects that will be manipulated, for example, in automated assembling. The micropositioner can be integrated into a microgripper to generate a complete manipulation system. For micropositioner fabrication, at first, Polylactic Acid (PLA) was chosen as the structural material, but after simulation and some experimental tests performed with a micropositioner made of Acrylonitrile Butadiene Styrene (ABS), it showed larger displacement (approx. 20%) due to its lower stiffness. A third test was performed with a positioner made with Polyethylene Terephthalate Glycol (PETG), obtaining an intermediate performance. The originality of this work resides in the geometrical arrangement based on thermoplastic polymer compliance mechanisms, as well as in the use of additive manufacturing to fabricate it. An experimental setup was developed to carry out experimental tests. ANSYS™ was used for simulation.


Sign in / Sign up

Export Citation Format

Share Document