scholarly journals Acoustic behavior prediction of monodisperse foams using polynomial surrogates

Author(s):  
Van-Hai Trinh

Acoustic properties of foams, such as macroscopic transports and sound absorption, are significantly influenced by their local morphology. The present paper develops a polynomial chaos expansion (PCE)-based surrogate model for characterizing the microstructure-properties relationships of acoustic monodisperse foams. First, the acoustic properties of the considered structures are estimated numerically by homogenization techniques using an idealized periodic unit cell and the Johnson-Champoux-Allard-Pride-Lafarge (JCAPL) model. The reference maps of transport parameters are then used to construct the PCE–based surrogates in the design space involving a set of foamy microstructural parameters such as membrane content, cell size, and porosity. Finally, after a validation phase and assessing convergence characteristics, the generated surrogates are employed to design some foam-based absorbers to illustrate the accuracy and computational efficiency of the proposed method.

Textiles ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 55-85
Author(s):  
Tufail Hassan ◽  
Hafsa Jamshaid ◽  
Rajesh Mishra ◽  
Muhammad Qamar Khan ◽  
Michal Petru ◽  
...  

Recently, very rapid growth has been observed in the innovations and use of natural-fiber-based materials and composites for acoustic applications due to their environmentally friendly nature, low cost, and good acoustic absorption capability. However, there are still challenges for researchers to improve the mechanical and acoustic properties of natural fiber composites. In contrast, synthetic fiber-based composites have good mechanical properties and can be used in a wide range of structural and automotive applications. This review aims to provide a short overview of the different factors that affect the acoustic properties of natural-fiber-based materials and composites. The various factors that influence acoustic performance are fiber type, fineness, length, orientation, density, volume fraction in the composite, thickness, level of compression, and design. The details of various factors affecting the acoustic behavior of the fiber-based composites are described. Natural-fiber-based composites exhibit relatively good sound absorption capability due to their porous structure. Surface modification by alkali treatment can enhance the sound absorption performance. These materials can be used in buildings and interiors for efficient sound insulation.


2021 ◽  
Vol 2 (1) ◽  
pp. 24-48
Author(s):  
Quoc-Bao Nguyen ◽  
Henri Vahabi ◽  
Agustín Rios de Anda ◽  
Davy-Louis Versace ◽  
Valérie Langlois ◽  
...  

This study has developed novel fully bio-based resorcinol epoxy resin–diatomite composites by a green two-stage process based on the living character of the cationic polymerization. This process comprises the photoinitiation and subsequently the thermal dark curing, enabling the obtaining of thick and non-transparent epoxy-diatomite composites without any solvent and amine-based hardeners. The effects of the diatomite content and the compacting pressure on microstructural, thermal, mechanical, acoustic properties, as well as the flame behavior of such composites have been thoroughly investigated. Towards the development of sound absorbing and flame-retardant construction materials, a compromise among mechanical, acoustic and flame-retardant properties was considered. Consequently, the composite obtained with 50 wt.% diatomite and 3.9 MPa compacting pressure is considered the optimal composite in the present work. Such composite exhibits the enhanced flexural modulus of 2.9 MPa, a satisfying sound absorption performance at low frequencies with Modified Sound Absorption Average (MSAA) of 0.08 (for a sample thickness of only 5 mm), and an outstanding flame retardancy behavior with the peak of heat release rate (pHRR) of 109 W/g and the total heat release of 5 kJ/g in the pyrolysis combustion flow calorimeter (PCFC) analysis.


Sign in / Sign up

Export Citation Format

Share Document