Classification of Activated Sludge Settleability Using Linear and Nonlinear Classification Functions

2008 ◽  
Vol 41 (2) ◽  
pp. 14600-14605
Author(s):  
Geert Gins ◽  
Jef Vanlaer ◽  
Ilse Y. Smets ◽  
Jan F. Van Impe
1980 ◽  
Vol 15 (1) ◽  
pp. 73-82 ◽  
Author(s):  
J.G. Henry ◽  
E.E. Salenieks

Abstract This study examined the effect of temperature on the settleabi1ity of activated sludge at various organic loading rates. Five completely mixed, bench-scale, activated sludge plants, operating under similar conditions at 5, 10 and 19°C, were continuously fed diluted, settled sewage supplemented with carbohydrate (sucrose). Hydraulic loading rates, MLSS and pH were maintained at constant levels during the experiments to eliminate these factors are variables. Dissolved oxygen was kept in excess of 3 mg/1 so that it would not be a limiting factor. Sludge Volume Indices (SVI ) and zone settling velocities were used to indicate changes in sludge settleability. Microscopic examination of the activated sludge indicated significant differences in the morphological features of filamentous microorganisms present at the two temperature extremes. At 19°C, the predominant forms were characterized by long curving trichomes, occasionally falsely branching, containing short cylindrical cells. At 5 °C, much smaller straight filaments, composed of long, narrow, rod-shaped cells appeared to be the principal microorganisms responsible for bulking. Various other filamentous forms were always present at each of the temperatures studied. Stirred sludge settling tests of moderately bulking sludges generally exhibited much higher settling velocities and lower SVI's than unstirred bulking samples. However, extremely filamentous bulking sludge exhibited comparable stirred and unstirred settling velocity and SVI values. The standard SVI test was found to be an inadequate indicator of the extent of bulking when trying to correlate the SVI failures from bench-scale performance with the results from continuous units. Lower temperature had no appreciable effect on COD removal efficiency as long as bulking did not cause a loss of solids in the effluent. However, results suggested that less than half the organic load could be accepted at 5°C, that could be handled at 19°C, before filamentous bulking occurred. A plot of loading versus temperature for various SVI's provided a visual indication of the safe loading limit below which bulking was unlikely to occur. The study clearly demonstrated that temperature can have a significant effect on sludge settleability.


1996 ◽  
Vol 34 (11) ◽  
pp. 25-32 ◽  
Author(s):  
P. Chudoba ◽  
R. Pujol

Most of municipal activated sludge plants located in wine production regions receive winery wastewaters during the grape harvest period which lasts usually only a few weeks. A drastic increase in organic pollution (COD, BOD) during this period generates a temporary overloading, resulting very often in biological problems such as decreased sludge settleability, sludge floc disintegration, increased SS concentration in treated effluent and in the worst case a complete plant failure. In order to work satisfactorily even during those temporary overloading periods, the plant has to be oversized. This strategy is rather costly, because such a plant has to run below its nominal capacity during a major part of the year. An original solution has been proposed and successfully tested at a municipal wastewater treatment plant in Eguisheim, France. The proposed technique is based on the addition of a mineral material with a low particle size, whose presence positively influences the physical behaviour of the sludge and will allow the nominal capacity of the plant to be surpassed without any important modification. The modification of the sludge structure around the added powdered material improved significantly the sludge settleability (DSVI< 160 ml/g) and enabled the plant to treat organic pollution several times higher than the nominal level.


Author(s):  
Hisashi Satoh ◽  
Yukari Kashimoto ◽  
Naoki Takahashi ◽  
Takashi Tsujimura

A deep learning-based two-label classifier 1 recognized a 20% morphological change in the activated flocs. Classifier-2 quantitatively recognized an abundance of filamentous bacteria in activated flocs.


1994 ◽  
Vol 30 (11) ◽  
pp. 159-169 ◽  
Author(s):  
Jiri Wanner

The paper briefly surveys topics covered by the IAWQ Specialist Group on Activated Sludge Population Dynamics. The activated sludge population dynamics has been formulated as a branch of water science and technology concerned with phenomena governing the relationships between activated sludge microorganisms and their functions. The characterization of organic pollution fractions in wastewaters according to their rate of biodegradation has been discussed and the role of wastewater as an inoculum stressed. The characterization of activated sludge biomass has been evaluated from two viewpoints: grouping according to metabolic abilities and identification and classification of activated sludge microorganisms. The basic selection mechanisms influencing the microbial composition of activated sludge have been described. The problems with activated sludge settling and thickening properties have been mentioned as a typical example of applied population dynamics research.


2001 ◽  
Vol 44 (10) ◽  
pp. 203-208 ◽  
Author(s):  
G.-H. Chen ◽  
S. Saby ◽  
M. Djafer ◽  
H.-K. Mo

This paper presents three new approaches to reduce excess sludge production in activated sludge systems: 1) modification of conventional activated sludge process with insertion of a sludge holding tank in the sludge return line; 2) chlorination of excess sludge so as to minimize excess sludge production; and 3) utilization of a metabolic uncoupler, 3, 3′, 4′, 5-Tetrachlorosalicylanilide (TCS) to maximize futile activity of sludge microorganisms thereby leading to a reduction of sludge growth. Pilot study was carried out to evaluate this modified activated sludge process (OSA). It has been confirmed that the OSA process is effective in reducing excess sludge; particularly when the ORP level in the sludge holding tank was kept at -250 mV, more than 50% of the excess sludge was reduced. This process can maintain the effluent quality and even perform with a better sludge settleability than a conventional system. Experimental work on the second approach showed that chlorination treatment of excess sludge at a chlorine dose of 0.066 g Cl2/g MLSS reduced the excess sludge by 60%, while concentration of THMS was found below 200 ppb in the treated sludge. However, such sludge chlorination treatment sacrificed sludge settleability. Thus, it is not feasible to introduce the chlorination step to a conventional system. The third approach confirmed that addition of TCS could reduce sludge growth effectively if the TCS concentration is greater than 0.4 ppm. A 0.8-ppm concentration of TCS actually reduced excess sludge by 45%. It was also experimentally demonstrated that presence of TCS increases the portion of active sludge microorganisms over the entire microbial population.


1993 ◽  
Vol 27 (2) ◽  
pp. 293-296 ◽  
Author(s):  
E. Echeverría ◽  
A. Seco ◽  
J. Ferrer

2017 ◽  
Vol 9 (7) ◽  
pp. 662 ◽  
Author(s):  
Yan Xu ◽  
Qian Du ◽  
Wei Li ◽  
Chen Chen ◽  
Nicolas Younan

Sign in / Sign up

Export Citation Format

Share Document