INDICATORS OF THE ANDROGENIC FUNCTION OF THE TESTES ASSOCIATED WITH THE Y-CHROMOSOME IN LABORATORY MICE

2018 ◽  
Vol 10 (04) ◽  
pp. 715-720
Keyword(s):  
1982 ◽  
Vol 34 (3) ◽  
pp. 241-252 ◽  
Author(s):  
Y. Matsuda ◽  
H.T. Imai ◽  
K. Moriwaki ◽  
K. Kondo ◽  
F. Bonhomme

1987 ◽  
Vol 50 (1) ◽  
pp. 69-72 ◽  
Author(s):  
Yutaka Nishioka

SummaryMice are the most widely used experimental mammals, and many inbred strains are available. However, except for the relatively recent strains derived from known wild populations, the relationships between wild and laboratory mice are not well understood. Based on the Y-chromosomal restriction fragmentlength polymorphism, seventeen inbred strains were classified into two groups: strains with the Mus musculus musculus type Y chromosome and those with the M. m. domesticus type Y chromosome. We extended the survey to an additional twenty-two inbred strains. The M. m. musculus type Y chromosome was found in AEJ/GnLe, AAU/SsJ, BDP/J, BXSB/MpJ, DA/HuSn, HTG/GoSfSn, I/LnJ, LP/J, NZW/LacJ, RIIIS/J, SB/Le, SEA/GnJ, SF/CamEi, SK/CamEi, SM/J, WB/ReJ, WC/ReJ and YBR/Ei, while the M. m. domesticus type Y chromosome was present in BUB/BnJ, MA/MyJ, PL/J and ST/bJ.


Genetics ◽  
1994 ◽  
Vol 136 (1) ◽  
pp. 225-230 ◽  
Author(s):  
P L Roubertoux ◽  
M Carlier ◽  
H Degrelle ◽  
M C Haas-Dupertuis ◽  
J Phillips ◽  
...  

Abstract The sexual dimorphism of aggression has led to a search for its Y chromosomal correlates. We have previously confirmed that initiation of attack behavior against a conspecific male is Y-dependent in two strains of laboratory mice (NZB and CBA/H). We provide evidence that the non-pseudoautosomal region of the Y is not involved and that only the pseudoautosomal region of the Y is correlated with initiation of attack behavior. The autosomal correlates also contribute to this behavior in an additive or interactive manner with the pseudoautosomal correlates.


2016 ◽  
Vol 90 (8) ◽  
pp. 4186-4198 ◽  
Author(s):  
Devinka Bamunusinghe ◽  
Zohreh Naghashfar ◽  
Alicia Buckler-White ◽  
Ronald Plishka ◽  
Surendranath Baliji ◽  
...  

ABSTRACTMouse leukemia viruses (MLVs) are found in the common inbred strains of laboratory mice and in the house mouse subspecies ofMus musculus. Receptor usage and envelope (env) sequence variation define three MLV host range subgroups in laboratory mice: ecotropic, polytropic, and xenotropic MLVs (E-, P-, and X-MLVs, respectively). These exogenous MLVs derive from endogenous retroviruses (ERVs) that were acquired by the wild mouse progenitors of laboratory mice about 1 million years ago. We analyzed the genomes of seven MLVs isolated from Eurasian and American wild mice and three previously sequenced MLVs to describe their relationships and identify their possible ERV progenitors. The phylogenetic tree based on the receptor-determining regions ofenvproduced expected host range clusters, but these clusters are not maintained in trees generated from other virus regions. Colinear alignments of the viral genomes identified segmental homologies to ERVs of different host range subgroups. Six MLVs show close relationships to a small xenotropic ERV subgroup largely confined to the inbred mouse Y chromosome.envvariations define three E-MLV subtypes, one of which carries duplications of various sizes, sequences, and locations in the proline-rich region ofenv. Outside theenvregion, all E-MLVs are related to different nonecotropic MLVs. These results document the diversity in gammaretroviruses isolated from globally distributedMussubspecies, provide insight into their origins and relationships, and indicate that recombination has had an important role in the evolution of these mutagenic and pathogenic agents.IMPORTANCELaboratory mice carry mouse leukemia viruses (MLVs) of three host range groups which were acquired from their wild mouse progenitors. We sequenced the complete genomes of seven infectious MLVs isolated from geographically separated Eurasian and American wild mice and compared them with endogenous germ line retroviruses (ERVs) acquired early in house mouse evolution. We did this because the laboratory mouse viruses derive directly from specific ERVs or arise by recombination between different ERVs. The six distinctively different wild mouse viruses appear to be recombinants, often involving different host range subgroups, and most are related to a distinctive, largely Y-chromosome-linked MLV ERV subtype. MLVs with ecotropic host ranges show the greatest variability with extensive inter- and intrasubtype envelope differences and with homologies to other host range subgroups outside the envelope. The sequence diversity among these wild mouse isolates helps define their relationships and origins and emphasizes the importance of recombination in their evolution.


Genetics ◽  
1991 ◽  
Vol 129 (1) ◽  
pp. 231-236
Author(s):  
M Carlier ◽  
P L Roubertoux ◽  
C Pastoret

Abstract Two parental strains of laboratory mice, NZB and CBA/H, were chosen for their differences in attack behavior. NZB have higher scores than CBA/H. An effect of the Y chromosome on attack behavior was determined for two maternal environments. Each male was tested once in a dyadic encounter with an A/J male as a standard opponent. The two reciprocal F1s and the four reciprocal backcrosses were used. In each group, the proportion of attacking males was used as the dependent variable. In the first experiment, the ovarian graft method was used to test for an effect of variation of the overall maternal environment: parental vs. F1. The results demonstrated an interaction between the Y chromosome and the maternal environment. By use of the adoption method, it was shown in the second experiment that this maternal effect was probably postnatal (and not prenatal).


2019 ◽  
Vol 1 (1) ◽  
pp. 1-5
Author(s):  
Abyt Ibraimov

In many animals, including us, the genetic sex is determined at fertilization by sex chromosomes. Seemingly, the sex determination (SD) in human and animals is determined by the amount of constitutive heterochromatin on Y chromosome via cell thermoregulation. It is assumed the medulla and cortex tissue cells in the undifferentiated embryonic gonads (UEG) differ in vulnerability to the increase of the intracellular temperature. If the amount of the Y chromosome constitutive heterochromatin is enough for efficient elimination of heat difference between the nucleus and cytoplasm in rapidly growing UEG cells the medulla tissue survives. Otherwise it doomed to degeneration and a cortex tissue will remain in the UEG. Regardless of whether our assumption is true or not, it remains an open question why on Y chromosome there is a large constitutive heterochromatin block? What is its biological meaning? Does it relate to sex determination, sex differentiation and development of secondary sexual characteristics? If so, what is its mechanism: chemical or physical? There is no scientifically sound answer to these questions.


Sign in / Sign up

Export Citation Format

Share Document