1700615: Kinetic modelling of propane dehydrogenation over a Pt–Sn/hierarchical SAPO-34 zeolite catalyst, including catalyst deactivation-ESI

2017 ◽  
Vol 42 (4) ◽  
pp. 344-360
Author(s):  
Milad Komasi ◽  
Shohreh Fatemi ◽  
Seyed Hesam Mousavi

Pt–Sn/hierarchical SAPO-34 was synthesised and kinetically modelled as an efficient and selective catalyst for propylene production through propane dehydrogenation. The kinetics of the reaction network were studied in an integral fixed-bed reactor at three temperatures of 550, 600 and 650 °C and weight hourly space velocities of 4 and 8 h−1 with a feed containing hydrogen and propane with relative molar ratios of 0.2, 0.5 and 0.8, at normal pressure. The experiments were performed in accordance with the full factorial experimental design. The kinetic models were constructed on the basis of different mechanisms and various deactivation models. The kinetics and deactivation parameters were simultaneously predicted and optimised using genetic algorithm optimisation. It was further proven that the Langmuir–Hinshelwood model can well predict propane dehydrogenation kinetics through lumping together all the possible dehydrogenation steps and also by assuming the surface reaction as the rate-determining step. A coke formation kinetic model has also shown appropriate results, confirming the experimental data by equal consideration of both monolayer and multilayer coke deposition kinetic orders and an exponential deactivation model.


2017 ◽  
Vol 60 (8) ◽  
pp. 570-579 ◽  
Author(s):  
Tom J. A. Corrie ◽  
Guy C. Lloyd-Jones

Abstract A concise formal synthesis of racemic allocolchicine has been developed, centred on three principal transformations: a retro-Brook alkylation reaction to generate an arylsilane, a gold-catalysed arylative cyclisation to generate the B-ring via biaryl linkage, and a palladium-catalysed carbonylation of an aryl chloride to generate an ester. 1H NMR monitoring of the key gold-catalysed cyclisation step reveals that a powerful catalyst deactivation process progressively attenuates the rate of catalyst turnover. The origins of the catalyst deactivation have been investigated, with an uncatalysed side-reaction, involving the substrate and the iodine(III) oxidant, identified as the source of a potent catalyst poison. The side reaction generates 1–4% of a diaryliodonium salt, and whilst this moiety is shown not to be an innate catalyst deactivator, when it is tethered to the arylsilane reactant, the inhibition becomes powerful. Kinetic modelling of processes run at two different catalyst concentrations allows extraction of the partitioning of the gold catalyst between the substrate and its diaryliodonium salt, with a rate of diaryliodonium salt generation consistent with that independently determined in the absence of catalyst. The high partition ratio between substrate and diaryliodonium salt (5/1) results in very efficient, and ultimately complete, diversion of the catalyst off-cycle. Graphical Abstract


2004 ◽  
Vol 272 (1-2) ◽  
pp. 23-28 ◽  
Author(s):  
R.Ramos Pinto ◽  
P Borges ◽  
M.A.N.D.A Lemos ◽  
F Lemos ◽  
F.Ramôa Ribeiro

Author(s):  
Gorka Elordi ◽  
Gartzen Lopez ◽  
Roberto Aguado ◽  
Martin Olazar ◽  
Javier Bilbao

HDPE has been pyrolysed at 450 °C and 500 °C using HZSM-5 zeolite as a catalyst. Batch runs have been carried out at atmospheric pressure in a conical spouted bed reactor. Product analysis has been carried out by means of a GC, connected on-line with a thermostated line. The degradation rate of the plastic is slightly faster at 500 °C than at 450 °C and much faster than thermal pyrolysis in both cases. Products have been grouped into five lumps: the lump of light olefins, C2-C4; light alkanes, C1-C4; the gasoline fraction, C5-C11 compounds; C11+ hydrocarbons; and the coke deposited on the catalyst. An HZSM-5 catalyst is appropriate to obtain light olefins; about 55 wt% in both cases. The yield of gasoline fraction is also considerable and although its composition is not suitable for commercial gasoline, is interesting for its use in petrochemistry. The catalyst deactivation rate is low.


Author(s):  
Yacine Benguerba ◽  
Mirella Virginie ◽  
Christine Dumas ◽  
Barbara Ernst

Abstract The dry reforming of CH4 was investigated in a catalytic fixed-bed reactor to produce hydrogen at different temperatures over supported bimetallic Ni-Co catalyst. The reactor model for the dry reforming of methane used a set of kinetic models: The Zhang et al model for the dry reforming of methane (DRM); the Richardson-Paripatyadar model for the reverse water gas shift (RWGS); and the Snoeck et al kinetics for the coke-deposition and gasification reactions. The effect of temperatures on the performance of the reactor was studied. The amount of each species consumed or/and produced were calculated and compared with the experimental determined ones. It was showed that the set of kinetic model used in this work gave a good fit and accurately predict the experimental observed profiles from the fixed bed reactor. It was found that reaction-4 and reaction-5 could be neglected which could explain the fact that this catalyst coked rapidly comparatively with other catalyst. The use of large amount of Ni-Co will lead to carbon deposition and so to the catalyst deactivation.


Sign in / Sign up

Export Citation Format

Share Document