scholarly journals Influence of hydrous pyrolysis on distribution of carbon and hydrogen isotopes by organic matter fractions. The nature of oil generation in the calder of Uzone Volcano in Kamchatka

2019 ◽  
Vol 64 (3) ◽  
pp. 227-236
Author(s):  
V. S. Sevastyanov ◽  
G. A. Karpov ◽  
A. Yu. Bychkov ◽  
O. V. Kuznetsova ◽  
V. S. Fedulov

The process of oil seeps transformation from the Uzon volcano caldera under the influence of hydrous pyrolysis at a temperature of 350 °C in argon and oxygen was investigated. It is shown that carbon and hydrogen isotope type curves (ITC) reflect the processes occurring in organic matter during hydrous pyrolysis in oxidizing and neutral media. The similarity in forms between carbon ITC of the Uzon oil seeps, the Bogachevka oil and biota of hydrothermal sources is revealed. Hydrogen ITCs have a more complex form, apparently associated with exchange processes occurring in hydrothermal water. Based on the conducted studies, it was assumed that on the one hand oil seeps in the Uzon caldera can serve as a source for the formation of Bogachevka oil, and on the other hand, it is possible that the circulating hydrothermal water in the caldera of the Uzon volcano brings to the surface the organic matter of the Bogachevka oil formation.

2004 ◽  
Vol 68 (3) ◽  
pp. 950 ◽  
Author(s):  
Marietta E. Echeverría ◽  
Daniel Markewitz ◽  
Lawrence A. Morris ◽  
Ronald L. Hendrick

2021 ◽  
Vol 11 (11) ◽  
pp. 5070
Author(s):  
Xesús Prieto-Blanco ◽  
Carlos Montero-Orille

In the last few years, some advances have been made in the theoretical modelling of ion exchange processes in glass. On the one hand, the equations that describe the evolution of the cation concentration were rewritten in a more rigorous manner. This was made into two theoretical frameworks. In the first one, the self-diffusion coefficients were assumed to be constant, whereas, in the second one, a more realistic cation behaviour was considered by taking into account the so-called mixed ion effect. Along with these equations, the boundary conditions for the usual ion exchange processes from molten salts, silver and copper films and metallic cathodes were accordingly established. On the other hand, the modelling of some ion exchange processes that have attracted a great deal of attention in recent years, including glass poling, electro-diffusion of multivalent metals and the formation/dissolution of silver nanoparticles, has been addressed. In such processes, the usual approximations that are made in ion exchange modelling are not always valid. An overview of the progress made and the remaining challenges in the modelling of these unique processes is provided at the end of this review.


Radiocarbon ◽  
2003 ◽  
Vol 45 (1) ◽  
pp. 101-112 ◽  
Author(s):  
Søren M Kristiansen ◽  
Kristian Dalsgaard ◽  
Mads K Holst ◽  
Bent Aaby ◽  
Jan Heinemeier

Dating of prehistoric anthropogenic earthworks requires either excavation for archaeological artifacts or macroscopic organic matter suitable for 14C analysis. Yet, the former, in many cases, is undesirable and the latter is difficult to obtain. Here we present a soil science procedure, which has the potential to overcome these problems. It includes careful sampling of buried former soil surfaces, acid-alkali-acid fractionation of soil organic matter (SOM), and subsequent 14C AMS dating. To test the procedure, soil from one of the largest known burial mounds in Scandinavia, Hohøj, and 9 other Danish burial mounds were sampled. The 14C dates from extracted SOM fractions were compared to reference ages obtained by other methods. We show that humic acid fractions in 7 of the 10 mounds had the same age as the reference, or were, at maximum, 280 yr older than the reference ages. The best age estimates were derived from an organic-rich layer from the upper cm of buried soil or sod. Differences among SOM fraction ages probably indicate the reliability of the dating. Hohøj dated to approximately 1400 BC and, thus, was up to 500 yr older than other dated Scandinavian mounds of comparable size. The remaining investigated burial mounds were dated to between 1700 and 1250 BC. We conclude that combined sampling of buried soil surfaces, SOM fractionation, and 14C analysis allows for dating of archaeological earthworks when minimal disturbance is required, or if no macroscopic organic remains are found.


2013 ◽  
Vol 29 (3) ◽  
pp. 333-343 ◽  
Author(s):  
K. Jegajeevagan ◽  
S. Sleutel ◽  
N. Ameloot ◽  
M. A. Kader ◽  
S. De Neve

2014 ◽  
Vol 27 (5) ◽  
pp. 1413-1423 ◽  
Author(s):  
Nicasio T. Jiménez‐Morillo ◽  
José A. González‐Pérez ◽  
Antonio Jordán ◽  
Lorena M. Zavala ◽  
José María Rosa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document