scholarly journals Distribution, fluxes and balance of particulate organic carbon in the Arctic ocean

2019 ◽  
Vol 59 (4) ◽  
pp. 544-552
Author(s):  
A. A. Vetrov ◽  
E. A. Romankevich

Particulate organic carbon (POC) is one of main component of carbon cycle in the Ocean. In this study an attempt to construct a picture of the distribution and fluxes of POC in the Arctic Ocean adjusting for interchange with the Pacific and Atlantic Oceans has been made. The specificity of this construction is associated with an irregular distribution of POC measurements and complicated structure and hydrodynamics of the waters masses. To overcome these difficulties, Multiple Linear Regression technic (MLR) was performed to test the significant relation between POC, temperature, salinity, as well depth, horizon, latitude and offshore distance. The mapping of POC distribution and its fluxes was carrying out at 38 horizons from 5 to 4150 m (resolution 1°×1°). Data on temperature, salinity, meridional and zonal components of current velocities were obtained from ORA S4 database (Integrated Climate Data Center, http://icdc.cen.uni-hamburg.de/las). The import-export of POC between the Arctic, Atlantic and Pacific Oceans as well as between Arctic Seas was precomputed by summer fluxes. The import of POC in the Arctic Ocean is estimated to be 38±8Tg Cyr-1, and the export is -9.5±4.4Tg Cyr-1.

2021 ◽  
Author(s):  
Daria Polosukhina ◽  
Anatoly Prokushkin ◽  
Axel Steinhof

<p>There is the significant progress in recent decades in the quantification of terrigenous carbon release to the rivers of the Arctic Ocean basin and characterization of its chemical properties, origin and age (e.g. Amon et al., 2012, Holmes et al., 2012). As warming accelerates the thawing permafrost may potentially increase the release the ancient carbon (Wild et al., 2019, Estop-Aragonés et al., 2020). However, more detailed analysis is still needed particularly in regard of the age of carbon exported from the diverse landscapes of large Arctic rivers and its transformation during the transport to the Arctic ocean.</p><p>In this study we analyzed D14C in dissolved organic carbon (DOC) and particulate organic carbon (POC) of the Yenisei River main channel and its major tributaries between 56oN and 68oN at freshet, summer and fall seasons. D14C was measured in Max Planck Institute for Biogeochemistry (Germany) by the accelerator mass spectrometry (AMS) system based on a 3MV Tandetron accelerator as described earlier (Steinhof et al., 2017).</p><p> The oldest DOC in the Yenisei main stem was detected right after the Krasnoyarsk dam (56oN) and varied during a year without clear seasonal pattern in the range of the fraction of modern C (fMC) from 0.868 to 1.028. At freshet the fMC increased down stream up to 1.12 at 60oN and then remained relatively stable between 61o and 67.4oN (1.097±0.014). The major tributaries released DOC with fMC ranging from 1.0869 (Angara, 58oN) to 1.1046 (Kurejka (66.5oN), demonstrating more modern C with latitude. During the summer-fall season the Yenisei main channel and main Eastern tributaries contained older DOC (fMC = 0.968-1.054 and 0.949-1.045, respectively).</p><p>The POC of the Yenisei River was sufficiently older (fMC = 0.83-0.92) than DOC at all seasons and showed similar latitudinal pattern, i.e. the youngest POC was detected near 60-61oN (fMC > 0.90). The D14C-POC values in analyzed tributaries were increasing with latitude at freshet (R2 = 0.53) and summer lowflow (R2 = 0.33), except the largest Eastern tributaries, demonstrating the slight opposite pattern. On the other hand, increasingly more ancient POC was releasing by permafrost-dominated Eastern tributaries with increasing basin size. In opposite, D14C-POC of Western tributaries showed increased input of more recently fixed carbon. Our findings provided new data on the formation of terrigenic carbon fluxes to the Arctic Ocean from one of the largest river basins in the Arctic. This study was supported by RFBR grants #18-05-60203-Arktika. The radiocarbon analyses were kindly supported by Max-Plank Institute for biogeochemistry (ZOTTO project).</p>


2011 ◽  
Vol 8 (2) ◽  
pp. 2093-2143 ◽  
Author(s):  
I. P. Semiletov ◽  
I. I. Pipko ◽  
N. E. Shakhova ◽  
O. V. Dudarev ◽  
S. P. Pugach ◽  
...  

Abstract. The Lena River integrates biogeochemical signals from its vast drainage basin and its signal reaches far out over the Arctic Ocean. Transformation of riverine organic carbon into mineral carbon, and mineral carbon into the organic form in the Lena River watershed, can be considered a quasi-equilibrated processes. Increasing the Lena discharge causes opposite effects on total organic (TOC) and inorganic (TCO2) carbon: TOC concentration increases, while TCO2 concentration decreases. Significant inter-annual variability in mean values of TCO2, TOC, and their sum (TC) has been found. This variability is determined by changes in land hydrology which cause differences in the Lena River discharge, because a negative correlation may be found between TC in September and mean discharge in August (a time shift of about one month is required for water to travel from Yakutsk to the Laptev Sea). Total carbon entering the sea with the Lena discharge is estimated to be almost 10 Tg C y−1. The annual Lena River discharge of particulate organic carbon (POC) may be equal to 0.38 Tg (moderate to high estimate). If we instead accept Lisytsin's (1994) statement concerning the precipitation of 85–95% of total particulate matter (PM) (and POC) on the marginal "filter", then only about 0.03–0.04 Tg of POC reaches the Laptev Sea from the Lena River. The Lena's POC export would then be two orders of magnitude less than the annual input of eroded terrestrial carbon onto the shelf of the Laptev and East Siberian seas, which is about 4 Tg. The Lena River is characterized by relatively high concentrations of primary greenhouse gases: CO2 and dissolved CH4. During all seasons the river is supersaturated in CO2 compared to the atmosphere: up to 1.5–2 fold in summer, and 4–5 fold in winter. This results in a narrow zone of significant CO2 supersaturation in the adjacent coastal sea. Spots of dissolved CH4 in the Lena delta channels may reach 100 nM, but the CH4 concentration decreases to 5–20 nM towards the sea, which suggests only a minor role of riverborne export of CH4 for the East Siberian Arctic Shelf (ESAS) CH4 budget in coastal waters. Instead, the seabed appears to be the source that provides most of the CH4 to the Arctic Ocean.


2009 ◽  
Vol 6 (4) ◽  
pp. 7853-7896 ◽  
Author(s):  
M. Roy-Barman

Abstract. The "boundary scavenging" box model is a cornerstone of our understanding of the particle-reactive radionuclide fluxes between the open ocean and the ocean margins. However, it does not describe the radionuclide profiles in the water column. Here, I present the transport-reaction equations for radionuclides transported vertically by reversible scavenging on settling particles and laterally by horizontal currents between the margin and the open ocean. Analytical solutions of these equations are compared with existing data. In the Pacific Ocean, the model produces "almost" linear 230Th profiles (as observed in the data) despite lateral transport. However, omitting lateral transport biased the 230Th based particle flux estimates by as much as 50%. 231Pa profiles are well reproduced in the whole water column of the Pacific Margin and from the surface down to 3000 m in the Pacific subtropical gyre. Enhanced bottom scavenging or inflow of 231Pa-poor equatorial water may account for the model-data discrepancy below 3000 m. The lithogenic 232Th is modelled using the same transport parameters as 230Th but a different source function. The main source of 232Th scavenged in the open Pacific is advection from the ocean margin, whereas a net flux of 230Th produced in the open Pacific is advected and scavenged at the margin, illustrating boundary exchange. In the Arctic Ocean, the model reproduces 230Th measured profiles that the uni-dimensional scavenging model or the scavenging-ventilation model failed to explain. Moreover, if lateral transport is ignored, the 230Th based particle settling speed may by underestimated by a factor 4 at the Arctic Ocean margin. The very low scavenging rate in the open Arctic Ocean combined with the enhanced scavenging at the margin accounts for the lack of high 231Pa/230Th ratio in arctic sediments.


2021 ◽  
Author(s):  
Elena Popova

<p>Such factors as climate, currents, morphology, riverine input, and the source rocks influence the composition of the sediments in the Arctic Ocean. Heavy minerals being quite inert in terms of transport can reflect the geology of the source rock clearly and indicate the riverine input. There is a long history of studying the heavy mineral composition of the sediments in the Arctic Ocean. The works by Vogt (1997), Kosheleva (1999), Stein (2008), and others study the distribution of the minerals both on a sea scale and oceanwide. The current study covers Russian shelf seas: Barents, Kara, Laptev, East Siberian, and Chukchi Seas. To collect the material several data sources were used: data collected by the institute VNIIOkeangeologia during numerous expeditions since 2000 for mapping the shelf, data from the old expedition reports (earlier than 2000) taken from the geological funds, and datasets from PANGAEA (www.pangaea.de). About 82 minerals and groups of minerals were included in the joint dataset. The density of the sample points varied significantly in all seas: 1394 data points in the Barents Sea, 713 in the Kara Sea, 487 in the Laptev Sea, 196 in the East Siberian Sea, and 245 in the Chukchi Sea. These data allowed comparing the areas in terms of major minerals and associations. Maps of prevailing and significant components were created in ODV (Schlitzer, 2020) to demonstrate the differences between the seas and indicate the sites of remarkable changes in the source rocks. Additionally, the standardized ratio was calculated to perform quantitative comparison: the sea average was divided by the weighted sea average and then the ratio of that number to the mineral average was found. Only the minerals present in at least four seas and amounting to at least 20 points per sea were considered. As a result, water areas with the highest content of particular minerals were detected. The ratio varied from 0 to 3,4. Combining the ratio data for various minerals allowed mapping specific groups or provinces for every sea and within the seas.</p><p> </p><p>Kosheleva, V.A., & Yashin, D.S. (1999). Bottom Sediments of the Arctic Seas. St. Petersburg: VNIIOkeangeologia, 286pp. (in Russian).</p><p>PANGAEA. Data Publisher for Earth & Environmental Science https://www.pangaea.de/</p><p>Schlitzer, R. (2020). Ocean Data View, Retrieved from https://odv.awi.de.</p><p>Stein, R. (2008). Arctic Ocean Sediments: Processes, Proxies, and Paleoenvironment. Oxford: Elsevier, 602pp.</p><p>Vogt, C. (1997). Regional and temporal variations of mineral assemblages in Arctic Ocean sediments as a climatic indicator during glacial/interglacial changes. Berichte Zur Polarforschung, 251, 309pp.</p>


Sign in / Sign up

Export Citation Format

Share Document