Radiocarbon patterns of dissolved and particulate organic carbon in the Yenisei River and its major tributaries

Author(s):  
Daria Polosukhina ◽  
Anatoly Prokushkin ◽  
Axel Steinhof

<p>There is the significant progress in recent decades in the quantification of terrigenous carbon release to the rivers of the Arctic Ocean basin and characterization of its chemical properties, origin and age (e.g. Amon et al., 2012, Holmes et al., 2012). As warming accelerates the thawing permafrost may potentially increase the release the ancient carbon (Wild et al., 2019, Estop-Aragonés et al., 2020). However, more detailed analysis is still needed particularly in regard of the age of carbon exported from the diverse landscapes of large Arctic rivers and its transformation during the transport to the Arctic ocean.</p><p>In this study we analyzed D14C in dissolved organic carbon (DOC) and particulate organic carbon (POC) of the Yenisei River main channel and its major tributaries between 56oN and 68oN at freshet, summer and fall seasons. D14C was measured in Max Planck Institute for Biogeochemistry (Germany) by the accelerator mass spectrometry (AMS) system based on a 3MV Tandetron accelerator as described earlier (Steinhof et al., 2017).</p><p> The oldest DOC in the Yenisei main stem was detected right after the Krasnoyarsk dam (56oN) and varied during a year without clear seasonal pattern in the range of the fraction of modern C (fMC) from 0.868 to 1.028. At freshet the fMC increased down stream up to 1.12 at 60oN and then remained relatively stable between 61o and 67.4oN (1.097±0.014). The major tributaries released DOC with fMC ranging from 1.0869 (Angara, 58oN) to 1.1046 (Kurejka (66.5oN), demonstrating more modern C with latitude. During the summer-fall season the Yenisei main channel and main Eastern tributaries contained older DOC (fMC = 0.968-1.054 and 0.949-1.045, respectively).</p><p>The POC of the Yenisei River was sufficiently older (fMC = 0.83-0.92) than DOC at all seasons and showed similar latitudinal pattern, i.e. the youngest POC was detected near 60-61oN (fMC > 0.90). The D14C-POC values in analyzed tributaries were increasing with latitude at freshet (R2 = 0.53) and summer lowflow (R2 = 0.33), except the largest Eastern tributaries, demonstrating the slight opposite pattern. On the other hand, increasingly more ancient POC was releasing by permafrost-dominated Eastern tributaries with increasing basin size. In opposite, D14C-POC of Western tributaries showed increased input of more recently fixed carbon. Our findings provided new data on the formation of terrigenic carbon fluxes to the Arctic Ocean from one of the largest river basins in the Arctic. This study was supported by RFBR grants #18-05-60203-Arktika. The radiocarbon analyses were kindly supported by Max-Plank Institute for biogeochemistry (ZOTTO project).</p>

2019 ◽  
Vol 158 ◽  
pp. 118-135 ◽  
Author(s):  
C. Fabre ◽  
S. Sauvage ◽  
N. Tananaev ◽  
G. Espitalier Noël ◽  
R. Teisserenc ◽  
...  

2019 ◽  
Vol 59 (4) ◽  
pp. 544-552
Author(s):  
A. A. Vetrov ◽  
E. A. Romankevich

Particulate organic carbon (POC) is one of main component of carbon cycle in the Ocean. In this study an attempt to construct a picture of the distribution and fluxes of POC in the Arctic Ocean adjusting for interchange with the Pacific and Atlantic Oceans has been made. The specificity of this construction is associated with an irregular distribution of POC measurements and complicated structure and hydrodynamics of the waters masses. To overcome these difficulties, Multiple Linear Regression technic (MLR) was performed to test the significant relation between POC, temperature, salinity, as well depth, horizon, latitude and offshore distance. The mapping of POC distribution and its fluxes was carrying out at 38 horizons from 5 to 4150 m (resolution 1°×1°). Data on temperature, salinity, meridional and zonal components of current velocities were obtained from ORA S4 database (Integrated Climate Data Center, http://icdc.cen.uni-hamburg.de/las). The import-export of POC between the Arctic, Atlantic and Pacific Oceans as well as between Arctic Seas was precomputed by summer fluxes. The import of POC in the Arctic Ocean is estimated to be 38±8Tg Cyr-1, and the export is -9.5±4.4Tg Cyr-1.


Author(s):  
Irina Panyushkina ◽  
David M Meko ◽  
Alexander Shiklomanov ◽  
Richard D Thaxton ◽  
Vladimyr Myglan ◽  
...  

Abstract The Yenisei River is the largest contributor of freshwater and energy fluxes among all rivers draining to the Arctic Ocean. Modeling long-term variability of Eurasian runoff to the Arctic Ocean is complicated by the considerable variability of river discharge in time and space, and the monitoring constraints imposed by a sparse gauged-flow network and paucity of satellite data. We quantify tree growth response to river discharge at the upper reaches of the Yenisei River in Tuva, South Siberia. Two regression models built from eight tree-ring width chronologies of Larix sibirica are applied to reconstruct winter (Nov–Apr) discharge for the period 1784-1997 (214 years), and annual (Oct–Sept) discharge for the period 1701–2000 (300 years). The Nov–Apr model explains 52% of the discharge variance whereas Oct–Sept explains 26% for the calibration intervals 1927–1997 and 1927-2000, respectively. This new hydrological archive doubles the length of the instrumental discharge record at the Kyzyl gauge and resets the temporal background of discharge variability back to 1784. The reconstruction finds a remarkable 80% upsurge in winter flow over the last 25 years, which is unprecedented in the last 214 years. In contrast, annual discharge fluctuated normally for this system, with only a 7% increase over the last 25 years. Water balance modeling with CRU data manifests a significant discrepancy between decadal variability of the gauged flow and climate data after 1960. We discuss the impact on the baseflow rate change of both the accelerating permafrost warming in the discontinuous zone of South Siberia and widespread forest fires. The winter discharge accounts for only one-third of the annual flow, yet the persistent 25-year upsurge is alarming. This trend is likely caused by Arctic Amplification, which can be further magnified by increased winter flow delivering significantly more freshwater to the Kara Sea during the cold season.


2021 ◽  
Author(s):  
Olga Ogneva ◽  
Gesine Mollenhauer ◽  
Matthias Fuchs ◽  
Juri Palmtag ◽  
Tina Sanders ◽  
...  

<p>Rapid climate warming in the Arctic intensifies permafrost thaw, increases active layer depth in summer and enhances riverbank and coastal erosion. All of these cause additional release of organic matter (OM) into streams and rivers. OM will be (1) transformed and modified during transport and subsequently discharged into the Arctic Ocean, or (2) removed from the active cycling by sedimentation. Here, the nearshore zone (which includes deltas, estuaries and coasts) is of great importance, where the major transformation processes of terrestrial material take place. Despite the importance of deltas for the biogeochemical cycle, their functioning is poorly understood. For our study we examined the Lena River nearshore, which represents the world’s third largest delta and supplies the second highest annual water and sediment discharge into the Arctic Ocean. Running through almost the entirety of East Siberia from Lake Baikal to the Laptev Sea, the Lena River drains an area of ∼2,61×10<sup>6</sup> km<sup>2</sup>  with approximately 90% underlain by permafrost. Our aims were to investigate the spatial variation of OM concentration and isotopic composition during transit from terrestrial permafrost source to the ocean interface, and to compare riverine and deltaic OM composition. We measured particulate and dissolved organic carbon (POC and DOC) concentrations and their associated δ<sup>13</sup>C and ∆<sup>14</sup>C values in water samples collected along a ∼1500 km long Lena River transect from Yakutsk downstream to the river outlet into the Laptev Sea.</p><p>We find significant qualitative and quantitative differences between the OM composition in the Lena River main channel and its delta. Further, we found suspended matter and POC concentrations decreased during transit from river to the Arctic Ocean.  DOC concentrations in the Lena delta were almost 50% lower than OM from the main channel. We found that deltaic POC is depleted in <sup>13</sup>C relative to fluvial POC, and that its <sup>14</sup>C signature suggests a modern composition indicating phytoplankton origin. This observation likely reflects the difference in hydrological conditions between the delta and the river main channel, caused by lower flow velocity and average water depth. We propose that deltaic environments provide favorable growth conditions for riverine primary producers such as algae and aquatic plants. Deltaic DOC is depleted in <sup>14</sup>C compared to riverine, especially in samples taken from the water surface, which indicates contributions from an additional old carbon stock source, specific for the Lena Delta. We suggest that this C is released from deltaic bank erosion and partly stays floating on the surface. In conclusion, we found a strong impact of deltaic processes on the fate and dominant signatures of OM discharged into the Arctic Ocean.</p>


Sign in / Sign up

Export Citation Format

Share Document