scholarly journals Transcriptome and Coexpression Network Analyses Reveal Hub Genes in Chinese Cabbage (Brassica rapa L. ssp. pekinensis) During Different Stages of Plasmodiophora brassicae Infection

2021 ◽  
Vol 12 ◽  
Author(s):  
Yuxiang Yuan ◽  
Liuyue Qin ◽  
Henan Su ◽  
Shuangjuan Yang ◽  
Xiaochun Wei ◽  
...  

Clubroot, caused by the soil-borne protist Plasmodiophora brassicae, is one of the most destructive diseases of Chinese cabbage worldwide. However, the clubroot resistance mechanisms remain unclear. In this study, in both clubroot-resistant (DH40R) and clubroot-susceptible (DH199S) Chinese cabbage lines, the primary (root hair infection) and secondary (cortical infection) infection stages started 2 and 5 days after inoculation (dai), respectively. With the extension of the infection time, cortical infection was blocked and complete P. brassica resistance was observed in DH40R, while disease scales of 1, 2, and 3 were observed at 8, 13, and 22 dai in DH199S. Transcriptome analysis at 0, 2, 5, 8, 13, and 22 dai identified 5,750 relative DEGs (rDEGs) between DH40R and DH199S. The results indicated that genes associated with auxin, PR, disease resistance proteins, oxidative stress, and WRKY and MYB transcription factors were involved in clubroot resistance regulation. In addition, weighted gene coexpression network analysis (WGCNA) identified three of the modules whose functions were highly associated with clubroot-resistant, including ten hub genes related to clubroot resistance (ARF2, EDR1, LOX4, NHL3, NHL13, NAC29, two AOP1, EARLI 1, and POD56). These results provide valuable information for better understanding the molecular regulatory mechanism of Chinese cabbage clubroot resistance.

2014 ◽  
Vol 104 (10) ◽  
pp. 1078-1087 ◽  
Author(s):  
Mary Ruth McDonald ◽  
Kalpana Sharma ◽  
Bruce D. Gossen ◽  
Abhinandan Deora ◽  
Jie Feng ◽  
...  

The disease cycle of Plasmodiophora brassicae consists of a primary phase in root hairs followed by a secondary phase in the root cortex and adjacent tissues. However, the role of root hair infection in subsequent cortical infection and development of P. brassicae is not well understood. To examine the role of the primary and secondary stages separately, inoculation studies with resting spores (source of primary zoospores) and secondary zoospores of a virulent and avirulent pathotype were conducted on canola (Brassica napus). The size of secondary zoospores and number of nuclei were also examined. The zoospores were larger (≈9.6 to 14.4 μm) than in previous reports and all were uninucleate. Inoculation with secondary zoospores alone produced both primary and secondary infection, even with the avirulent pathotype. No symptoms developed from inoculation with avirulent primary zoospores but tiny, bead-shaped clubs developed from inoculation with avirulent secondary zoospores. Inoculation with virulent secondary zoospores alone resulted in lower disease severity than inoculation with virulent resting spores alone. The results indicate that recognition of infection by the host and initiation of a response (induction or suppression of resistance) occurs during primary infection, although recognition can also occur during cortical infection and development.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xitong Liu ◽  
Stephen E. Strelkov ◽  
Rifei Sun ◽  
Sheau-Fang Hwang ◽  
Rudolph Fredua-Agyeman ◽  
...  

Clubroot is a serious soil-borne disease of crucifers caused by the obligate parasite Plasmodiophora brassicae. The genetic basis and histopathology of clubroot resistance in two Chinese cabbage (Brassica rapa ssp. pekinensis) inbred lines Bap055 and Bap246, challenged with pathotype 4 of P. brassicae, was evaluated. The Chinese cabbage cultivar “Juxin” served as a susceptible check. The resistance in Bap055 was found to be controlled by the CRa gene, while resistance in Bap246 fit a model of control by unknown recessive gene. Infection of the roots by P. brassicae was examined by inverted microscopy. Despite their resistance, primary and secondary infection were observed to occur in Bap055 and Bap246. Primary infection was detected at 2 days post-inoculation (DPI) in “Juxin,” at 4 DPI in Bap055, and at 6 DPI in Bap246. Infection occurred most quickly on “Juxin,” with 60% of the root hairs infected at 10 DPI, followed by Bap055 (31% of the root hairs infected at 12 DPI) and Bap246 (20% of the root hairs infected at 14 DPI). Secondary infection of “Juxin” was first observed at 8 DPI, while in Bap055 and Bap246, secondary infection was first observed at 10 DPI. At 14 DPI, the percentage of cortical infection in “Juxin,” Bap055 and Bap246 was 93.3, 20.0, and 11.1%, respectively. Although cortical infection was more widespread in Bap055 than in Bap246, secondary infection in both of these hosts was restricted relative to the susceptible check, and the vascular system remained intact. A large number of binucleate secondary plasmodia were observed in “Juxin” and the vascular system was disrupted at 16 DPI; in Bap055 and Bap246, only a few secondary plasmodia were visible, with no binucleate secondary plasmodia. The defense mechanisms and expression of resistance appears to differ between Chinese cabbage cultivars carrying different sources of resistance.


2020 ◽  
Vol 21 (14) ◽  
pp. 5033
Author(s):  
Md. Masud Karim ◽  
Abdulsalam Dakouri ◽  
Yan Zhang ◽  
Qilin Chen ◽  
Gary Peng ◽  
...  

Genetic resistance is widely used to manage clubroot (Plasmodiophora brassicae) in brassica crops, but new pathotypes have recently been identified on canola (Brassica napus) on the Canadian prairies. Resistance effective against both the most prevalent pathotype (3H, based on the Canadian Clubroot Differential system) and the new pathotypes is needed. BC1 plants of Brassica rapa from a cross of line 96-6990-2 (clubroot resistance originating from turnip cultivar ‘Waaslander’) and a susceptible doubled-haploid line, ACDC, exhibited a 1:1 segregation for resistance against pathotypes 3H and 5X. A resistance gene designated as Rcr3 was mapped initially based on the percentage of polymorphic variants using bulked segregant RNA sequencing (BSR-Seq) and further mapped using Kompetitive Allele Specific PCR. DNA variants were identified by assembling short reads against a reference genome of B. rapa. Rcr3 was mapped into chromosome A08. It was flanked by single nucleotide polymorphisms (SNP) markers (A90_A08_SNP_M12 and M16) between 10.00 and 10.23 Mb, in an interval of 231.6 Kb. There were 32 genes in the Rcr3 interval. Three genes (Bra020951, Bra020974, and Bra020979) were annotated with disease resistance mechanisms, which are potential candidates for Rcr3. Another resistance gene, designated as Rcr9wa, for resistance to pathotype 5X was mapped, with the flanking markers (A90_A08_SNP_M28 and M79) between 10.85 and 11.17 Mb using the SNP sites identified through BSR-Seq for Rcr3. There were 44 genes in the Rcr9wa interval, three of which (Bra020827, Bra020828, Bra020814) were annotated as immune-system-process related genes, which are potential candidates for Rcr9wa.


2021 ◽  
Author(s):  
Huishan Liu ◽  
Chinedu Charles Nwafor ◽  
Yinglan Piao ◽  
Xiaonan Li ◽  
Zongxiang Zhan ◽  
...  

Abstract BackgroundPlasmodiophora brassicae is a soil-borne pathogen that attacks the roots of cruciferous plants, causing clubroot disease. CircRNAs are non-coding RNAs widely exist in plant and animal species which can acting as “microRNA (miRNA) sponges” and “competing endogenous RNAs (ceRNAs)”. Knowledge of circRNAs has been updated continuously and rapidly. However, the information about circRNAs in the regulation of clubroot-disease resistance is limited in Brassica rapa. ResultsHere, the Chinese cabbage (BJN 222) containing clubroot resistance gene (CRa) resistant to the Pb4 was susceptible to the PbE of P. brassicae. To investigate the mechanism of cicRNAs responsible for clubroot-disease resistance in Brassica rapa, the circRNA-seq was performed roots of BJN 222 at 0 d, 8 d, and 23 d after inoculated with Pb4 and PbE. A total of 1636 circRNAs were detected distributed on 10 chromosomes. Furthermore, total 231 differentially expressed circRNAs between groups were screened. Parental genes of circRNAs functions analysis results indicated that the expression of circRNAs was affected not only by inoculation time but also by the pathogenicity of P. brassicae. However, the “Phenylalanine, tyrosine, and tryptophan biosynthesis” pathway was significant enriched between the two pathotypes at different inoculation times. All the expression of target genes annotated with “receptor-like protein kinase,” “zinc finger protein,” “LRR-repeat protein,” and “hormone-related” identified from the circRNA-miRNA-mRNA network were analyzed. 5 target genes were consistent with the expression pattern of novel_circ_000495 at 8 dpi, but only Bra026508 was significantly up-regulated. ConclusionThe up-regulated novel_circ_000495 might suppressed the expression of miR5656-y, leading to the up-regulation of Bra026508. Our results provided new insights to clubroot resistance mechanisms of B.rapa and laid a foundation for further research on the function of circRNAs responsible for the pathogen infection.


2014 ◽  
Vol 139 (3) ◽  
pp. 247-252 ◽  
Author(s):  
Feng Gao ◽  
Arvind H. Hirani ◽  
Jun Liu ◽  
Zheng Liu ◽  
Guohua Fu ◽  
...  

There are various clubroot pathogen (Plasmodiophora brassicae) resistance genes within Brassica species with european turnip (B. rapa ssp. rapifera) being identified as potentially the best source of resistance for the development of clubroot-resistant cultivars in chinese cabbage (B. rapa ssp. pekinensis). To use clubroot resistance genes effectively, it is necessary to map these genes so that molecular markers inside or closely linked to these resistance genes can be developed. Using molecular marker-assisted selection, the clubroot resistance genes can be effectively transferred from cultivar to cultivar and from species to species. In this report, one clubroot resistance locus was mapped on linkage group A3 using five segregating populations developed from five chinese cabbage cultivars, suggesting that all the five cultivars shared the same clubroot resistance locus. Furthermore, one of these five chinese cabbage cultivars was used to develop a large segregating population to fine-map this clubroot resistance locus to a 187-kilobp chromosomal region. Molecular markers that are closely linked to the mapped clubroot resistance locus have been developed that can be used for marker-assisted selection in chinese cabbage and canola/rapeseed (B. rapa and B. napus) breeding programs.


2012 ◽  
Vol 18 (2) ◽  
pp. 123-128 ◽  
Author(s):  
Min-Jeong Kim ◽  
Chang-Ki Shim ◽  
Yong-Ki Kim ◽  
Sung-Jun Hong ◽  
Jong-Ho Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document