scholarly journals The role of circadian clock genes in mental disorders

2007 ◽  
Vol 9 (3) ◽  
pp. 333-342 ◽  

The study of molecular clock mechanisms in psychiatric disorders is gaining significant interest due to data suggesting that a misalignment between the endogenous circadian system and the sleep-wake cycle might contribute to the clinical status of patients suffering from a variety of psychiatric disorders. Sleep disturbances in major depressive disorder (MDD) are characterized by increased sleep latency, poorer sleep efficiency reduced latency to the first rapid eye movement (REM) sleep episode, and early-morning awakening, but there is little data to indicate a role of circadian clock genes in MDD. There is also relatively little information regarding the role of clock genes in anxiety. In contrast, a significant amount of evidence gathered in bipolar disorder (BPD) patients suggests a circadian rhythm disorder, namely an advanced circadian rhythm and state-dependent alterations of REM sleep latency. Most research on the role of clock genes in BPD has focused on polymorphisms of CLOCK, but the lithium target GSK3 may also play a significant role. A circadian phase shift is also theorized to contribute to the pathophysiology of winter seasonal affective disorder (SAD). Certain allelic combinations of NPAS2, PER3, and BMAL1 appear to contribute to the risk of SAD. In chronic schizophrenia, disturbances of sleep including insomnia and reduced sleep efficiency have been observed. Genetic studies have found associations with CLOCK, PER1, PER3, and TIMELESS. Sleep and circadian changes associated with dementia due to Alzheimer's disease suggest a functional change in the circadian master clock, which is supported by postmortem studies of clock gene expression in the brain.

2017 ◽  
Vol 26 (4) ◽  
pp. 347-354 ◽  
Author(s):  
Naoto Tani ◽  
Tomoya Ikeda ◽  
Shigeki Oritani ◽  
Tomomi Michiue ◽  
Takaki Ishikawa

2008 ◽  
Vol 75 (8) ◽  
pp. 1616-1622 ◽  
Author(s):  
Hideyuki Terazono ◽  
Ahmed Hamdan ◽  
Naoya Matsunaga ◽  
Naoto Hayasaka ◽  
Hiroaki Kaji ◽  
...  

2007 ◽  
Vol 24 (4) ◽  
pp. 573-580 ◽  
Author(s):  
RONALD DORENBOS ◽  
MASSIMO CONTINI ◽  
HAJIME HIRASAWA ◽  
STEFANO GUSTINCICH ◽  
ELIO RAVIOLA

The mammalian neural retina contains single or multiple intrinsic circadian oscillators that can be directly entrained by light cycles. Dopaminergic amacrine (DA) cells represent an especially interesting candidate as a site of the retinal oscillator because of the crucial role of dopamine in light adaptation, and the widespread distribution of dopamine receptors in the retina. We hereby show by single-cell, end-point RT-PCR that retinal DA cells contain the transcripts for six core components of the circadian clock: Bmal1, Clock, Cry1, Cry2, Per1, and Per2. Rod photoreceptors represented a negative control, because they did not appear to contain clock transcripts. We finally confirmed that DA cells contain the protein encoded by the Bmal1 gene by comparing immunostaining of the nuclei of DA cells in the retinas of wildtype and Bmal1−/− mice. It is therefore likely that DA cells contain a circadian clock that anticipates predictable variations in retinal illumination.


Author(s):  
Ziru Jiang ◽  
Kexin Zou ◽  
Xia Liu ◽  
Hangchao Gu ◽  
Yicong Meng ◽  
...  

Abstract Objective To study the effect of aging on ovarian circadian rhythm. Design Human and animal study. Setting University hospital and research laboratory. Patients/animals Human granulosa cells were obtained by follicular aspiration from women undergoing in vitro fertilization (IVF), and ovarian and liver tissues were obtained from female C57BL/6 mice. Intervention(s) None. Main outcome measure(s) Expression of circadian genes in young and older human granulosa cells and circadian rhythm in ovaries and livers of young and older mice. Result(s) All examined circadian clock genes in human granulosa cells showed a downward trend in expression with aging, and their mRNA expression levels were negatively correlated with age (P < 0.05). Older patients (≥ 40 years of age) had significantly reduced serum anti-Müllerian hormone (AMH) levels. Except for Rev-erbα, all other examined circadian clock genes were positively correlated with the level of AMH (P < 0.05). The circadian rhythm in the ovaries of older mice (8 months) was changed significantly relative to that in ovaries of young mice (12 weeks), although the circadian rhythm in the livers of older mice was basically consistent with that of young mice. Conclusion(s) Lower ovarian reserve in older women is partially due to ovarian circadian dysrhythmia as a result of aging.


2017 ◽  
Vol 42 (3) ◽  
pp. 266-273 ◽  
Author(s):  
Joanna Kotwica-Rolinska ◽  
Lenka Pivarciova ◽  
Hanka Vaneckova ◽  
David Dolezel

Sign in / Sign up

Export Citation Format

Share Document