scholarly journals Bed reflectivity beneath inactive ice streams in West Antarctica

2003 ◽  
Vol 36 ◽  
pp. 287-291 ◽  
Author(s):  
Ginny A. Catania ◽  
Howard B. Conway ◽  
Anthony M. Gades ◽  
Charles F. Raymond ◽  
Hermann Engelhardt

AbstractRadio-echo sounding (RES) techniques are used to examine spatial changes in bed reflectivity across relict ice streams inWest Antarctica. Measurements from adjacent interstream ridges are used to correct the measured power returned from the bed for attenuation and losses due to geometric spreading, scattering and absorption. RES measurements near boreholes drilled on Ice Stream C (ISC) indicate high coefficients of bed reflectivity (R > 0.1) in locations where the bed was thawed and boreholes connected to the basal water system, and low reflectivity coefficients (R < 0.02) at locations that were frozen and not connected. Intermediate values of bed reflectivity were measured at locations where the connection to the basal water system was weak. Measurements across four relict margins show that bed reflectivity usually jumps from low to high values several kilometers inside the outermost buried crevasses. We interpret this to be a transition from frozen to thawed basal conditions and discuss implications of these observations.

2003 ◽  
Vol 37 ◽  
pp. 377-382 ◽  
Author(s):  
Martin J. Siegert ◽  
Antony J. Payne ◽  
Ian Joughin

AbstractIt has been shown recently that ice streams are fed by fast-flowing tributaries occupying well-defined subglacial troughs and with shared source areas. Here, ice-penetrating radio-echo sounding (RES) data are analyzed in conjunction with ice surface velocities derived from interferometric synthetic aperture radar (InSAR), to determine the englacial properties of tributaries feeding Ice Stream D, West Antarctica. All of Ice Stream D’s tributaries are coincident with “buckled” internal ice-sheet layers, most probably deformed by the processes responsible for enhanced ice flow. Between the tributaries well-preserved internal layers occur. The data reveal that no lateral migration of the ice-stream tributaries has occurred recently. This is consistent with thermomechanical ice-flow modelling, which indicates that the flow of Ice Stream D is controlled by a subglacial trough and is unaffected by changes to the flow of neighbouring Ice Stream C.


2000 ◽  
Vol 46 (152) ◽  
pp. 88-94 ◽  
Author(s):  
A. M. Gades ◽  
C. F. Raymond ◽  
H. Conway ◽  
R. W. Jagobel

AbstractWe have used ground-based radio-echo sounding (RES) profiles to reveal the spatial distribution of basal and internal ice properties across Siple Dome, West Antarctica, and under the dormant ice streams on its flanks. The RES-detected bed-reflection power, corrected for the effects of instrumentation and ice-thickness variation, is nearly constant across Siple Dome at a value suggesting spatially homogeneous basal properties of ice frozen to bedrock. Till, if present under the dome, must be thin (<0.1 m). The high basal reflectivity measured under now dormant “Siple Ice Stream” (SIS) and Ice Stream C suggests that they are underlain by either a thin (<0.05 m) water layer or a thick (>1 m) thawed or frozen till layer. The evidence that the dormant SIS is not frozen directly to underlying bedrock (but is separated by a water or till layer) is a further indication that it was once an active ice stream, and suggests that streaming motion may have ceased before the basal layer was frozen. The absence of a thick till layer beneath Siple Dome is consistent with its apparent stability as an inter-ice-stream ridge in the past and may suggest that it will remain as a stable limitation of ice-stream width in the future.


2011 ◽  
Vol 5 (4) ◽  
pp. 907-916 ◽  
Author(s):  
E. C. King

Abstract. The Antarctic Ice Sheet loses mass to the surrounding ocean mainly by drainage through a network of ice streams: fast-flowing glaciers bounded on either side by ice flowing one or two orders of magnitude more slowly. Ice streams flow despite low driving stress because of low basal resistance but are known to cease flowing if the basal conditions change, which can take place when subglacial sediment becomes dewatered by freezing or by a change in hydraulic pathways. Carlson Inlet, Antarctica has been interpreted as a stagnated ice stream, based on surface and basal morphology and shallow radar reflection profiling. To resolve the question of whether the flow history of Carlson Inlet has changed in the past, I conducted a ground-based radar survey of Carlson Inlet, the adjacent part of Rutford Ice Stream, and Talutis Inlet, West Antarctica. This survey provides details of the internal ice stratigraphy and allows the flow history to be interpreted. Tight folding of isochrones in Rutford Ice Stream and Talutis Inlet is interpreted to be the result of lateral compression during convergent flow from a wide catchment into a narrow, fast-flowing trunk. In contrast, the central part of Carlson Inlet has gently-folded isochrones that drape over the bed topography, suggestive of local accumulation and slow flow. A 1-D thermo-mechanical model was used to estimate the age of the ice. I conclude that the ice in the centre of Carlson Inlet has been near-stagnant for between 3500 and 6800 yr and that fast flow has not occurred there during that time period.


1979 ◽  
Vol 24 (90) ◽  
pp. 63-75 ◽  
Author(s):  
K. E. Rose

AbstractExtensive radio echo-sounding has mapped the part of West Antarctica between Byrd Station, the Whitmore Mountains, the Transantarctic Mountains, and the Ross Ice Shelf. The ice sheet in this area is dominated by five major sub-parallel ice streams (A–E), which are up to 100 km wide and extend inland from the grounding line of the Ross Ice Shelf for about 400 km. Their positions have been determined by crevassing seen on radio echo-sounding records, trimetrogon photographs, and Landsat imagery. The ice streams are characterized by their flat transverse cross-sections, while the intervening ice sheet exhibits domes and ridges. Ice flow lines are defined from the ice-surface contour pattern and the trend of the ice streams. It is apparent from this work that the flow line passing through Byrd Station joins ice stream D.The bedrock of the area is relatively smooth near the Ross Ice Shelf, becoming rougher near Byrd Station and especially so near the Whitmore Mountains. Bedrock troughs, which control the positions of the ice streams, are believed to have a tectonic origin.In this paper the role of the ice streams in the glaciological regime of West Antarctica is investigated from radio-echo data and estimates of balance velocity, basal shear stress, and basal temperatures.


1979 ◽  
Vol 24 (90) ◽  
pp. 63-75 ◽  
Author(s):  
K. E. Rose

AbstractExtensive radio echo-sounding has mapped the part of West Antarctica between Byrd Station, the Whitmore Mountains, the Transantarctic Mountains, and the Ross Ice Shelf. The ice sheet in this area is dominated by five major sub-parallel ice streams (A–E), which are up to 100 km wide and extend inland from the grounding line of the Ross Ice Shelf for about 400 km. Their positions have been determined by crevassing seen on radio echo-sounding records, trimetrogon photographs, and Landsat imagery. The ice streams are characterized by their flat transverse cross-sections, while the intervening ice sheet exhibits domes and ridges. Ice flow lines are defined from the ice-surface contour pattern and the trend of the ice streams. It is apparent from this work that the flow line passing through Byrd Station joins ice stream D.The bedrock of the area is relatively smooth near the Ross Ice Shelf, becoming rougher near Byrd Station and especially so near the Whitmore Mountains. Bedrock troughs, which control the positions of the ice streams, are believed to have a tectonic origin.In this paper the role of the ice streams in the glaciological regime of West Antarctica is investigated from radio-echo data and estimates of balance velocity, basal shear stress, and basal temperatures.


2019 ◽  
Vol 61 (81) ◽  
pp. 188-197
Author(s):  
Hafeez Jeofry ◽  
Neil Ross ◽  
Martin J. Siegert

AbstractNumerical ice-sheet models are commonly matched to surface ice velocities from InSAR measurements by modifying basal drag, allowing the flow and form of the ice sheet to be simulated. Geophysical measurements of the bed are rarely used to examine if this modification is realistic, however. Here, we examine radio-echo sounding (RES) data from the Weddell Sea sector of West Antarctica to investigate how the output from a well-established ice-sheet model compares with measurements of the basal environment. We know the Weddell Sea sector contains the Institute, Möller and Foundation ice streams, each with distinct basal characteristics: Institute Ice Stream lies partly over wet unconsolidated sediments, where basal drag is very low; Möller Ice Stream lies on relatively rough bed, where basal drag is likely larger; and Foundation Ice Stream is controlled by a deep subglacial trough with flow-aligned bedrock landforms and smooth unconsolidated sediments. In general, the ice-sheet model represents each ice-stream system well. We also find that ice velocities do not match perfectly in some locations, and that adjustment of the boundaries of low basal drag, to reflect RES evidence, should improve model performance. Our work showcases the usefulness of RES in calibrating ice-sheet model results with observations of the bed.


2011 ◽  
Vol 5 (2) ◽  
pp. 1219-1238
Author(s):  
E. C. King

Abstract. The Antarctic Ice Sheet loses mass to the surrounding ocean mainly by drainage through a network of ice streams: fast-flowing glaciers bounded on either side by ice flowing one or two orders of magnitude more slowly. Ice streams flow despite low driving stress because of low basal resistance but are known to cease flowing if the basal conditions change, which can take place when subglacial sediment becomes dewatered by freezing or by a change in hydraulic pathways. Carlson Inlet, Antarctica has been interpreted as a stagnated ice stream, based on surface and basal morphology and shallow radar reflection profiling. To resolve the question of whether the flow history of Carlson Inlet has changed in the past, I conducted a ground-based radar survey of Carlson Inlet, the adjacent part of Rutford Ice Stream, and Talutis Inlet, West Antarctica. This survey provides details of the internal ice stratigraphy and allows the flow history to be interpreted. Tight folding of isochrones in Rutford Ice Stream and Talutis Inlet is interpreted to be the result of lateral compression during convergent flow from a wide catchment into a narrow, fast-flowing trunk. In contrast, the central part of Carlson Inlet has gently-folded isochrones that drape over the bed topography, suggestive of local accumulation and slow flow. A 1-D thermo-mechanical model was used to estimate the age of the ice. I conclude that the ice in the centre of Carlson Inlet has been near-stagnant for between 3500 and 6800 years and that fast flow has not occurred there during that time period.


2013 ◽  
Vol 59 (218) ◽  
pp. 1147-1162 ◽  
Author(s):  
S.P. Carter ◽  
H.A. Fricker ◽  
M.R. Siegfried

AbstractThe subglacial water system of lower Whillans Ice Stream on the Siple Coast, West Antarctica, contains numerous connected subglacial lakes in three hydrological basins (northern, central and southern). We use Ice, Cloud and land Elevation Satellite (ICESat) data to derive estimates of lake volume change and regional thickness changes. By combining these results with a water budget model, we show that a uniform, localized thickness increase perturbed the hydropotential, resulting in a change in course of a major flow path within the system in 2005. Water originating from upper Whillans and Kamb Ice Streams that previously supplied the southern basin became diverted toward Subglacial Lake Whillans (SLW). This diversion led to a tenfold filling rate increase of SLW. Our observation suggests that water piracy may be common in the Siple Coast region, where the gentle basal relief makes the basal hydropotential particularly sensitive to small changes in ice thickness. Given the previously inferred connections between water piracy and ice-stream slowdown elsewhere in the region, the subtle and complex nature of this system presents new challenges for numerical models.


2003 ◽  
Vol 36 ◽  
pp. 66-72 ◽  
Author(s):  
Martin Truffer ◽  
Keith A. Echelmeyer

AbstractFast-flowing ice streams and outlet glaciers provide the major avenues for ice flow from past and present ice sheets. These ice streams move faster than the surrounding ice sheet by a factor of 100 or more. Several mechanisms for fast ice-stream flow have been identified, leading to a spectrum of different ice-stream types. In this paper we discuss the two end members of this spectrum, which we term the “ice-stream” type (represented by the Siple Coast ice streams in West Antarctica) and the “isbræ” type (represented by Jakobshavn Isbræ in Greenland). The typical ice stream is wide, relatively shallow (∼1000 m), has a low surface slope and driving stress (∼10 kPa), and ice-stream location is not strongly controlled by bed topography. Fast flow is possible because the ice stream has a slippery bed, possibly underlain by weak, actively deforming sediments. The marginal shear zones are narrow and support most of the driving stress, and the ice deforms almost exclusively by transverse shear. The margins seem to be inherently unstable; they migrate, and there are plausible mechanisms for such ice streams to shut down. The isbræ type of ice stream is characterized by very high driving stresses, often exceeding 200 kPa. They flow through deep bedrock channels that are significantly deeper than the surrounding ice, and have steep surface slopes. Ice deformation includes vertical as well as lateral shear, and basal motion need not contribute significantly to the overall motion. The marginal shear zone stend to be wide relative to the isbræ width, and the location of isbræ and its margins is strongly controlled by bedrock topography. They are stable features, and can only shut down if the high ice flux cannot be supplied from the adjacent ice sheet. Isbræs occur in Greenland and East Antarctica, and possibly parts of Pine Island and Thwaites Glaciers, West Antarctica. In this paper, we compare and contrast the two types of ice streams, addressing questions such as ice deformation, basal motion, subglacial hydrology, seasonality of ice flow, and stability of the ice streams.


2013 ◽  
Vol 54 (64) ◽  
pp. 105-114 ◽  
Author(s):  
S.R. Harland ◽  
J.-M. Kendall ◽  
G.W. Stuart ◽  
G.E. Lloyd ◽  
A.F. Baird ◽  
...  

Abstract Ice streams provide major drainage pathways for the Antarctic ice sheet. The stress distribution and style of flow in such ice streams produce elastic and rheological anisotropy, which informs ice-flow modelling as to how ice masses respond to external changes such as global warming. Here we analyse elastic anisotropy in Rutford Ice Stream, West Antarctica, using observations of shear-wave splitting from three-component icequake seismograms to characterize ice deformation via crystal-preferred orientation. Over 110 high-quality measurements are made on 41 events recorded at five stations deployed temporarily near the ice-stream grounding line. To the best of our knowledge, this is the first well-documented observation of shear-wave splitting from Antarctic icequakes. The magnitude of the splitting ranges from 2 to 80 ms and suggests a maximum of 6% shear-wave splitting. The fast shear-wave polarization direction is roughly perpendicular to ice-flow direction. We consider three mechanisms for ice anisotropy: a cluster model (vertical transversely isotropic (VTI) model); a girdle model (horizontal transversely isotropic (HTI) model); and crack-induced anisotropy (HTI model). Based on the data, we can rule out a VTI mechanism as the sole cause of anisotropy – an HTI component is needed, which may be due to ice crystal a-axis alignment in the direction of flow or the alignment of cracks or ice films in the plane perpendicular to the flow direction. The results suggest a combination of mechanisms may be at play, which represent vertical variations in the symmetry of ice crystal anisotropy in an ice stream, as predicted by ice fabric models.


Sign in / Sign up

Export Citation Format

Share Document