scholarly journals Elevation change and ice flow at Horseshoe Valley, Patriot Hills, West Antarctica

2004 ◽  
Vol 39 ◽  
pp. 20-28 ◽  
Author(s):  
Gino Casassa ◽  
Andrés Rivera ◽  
César Acuña ◽  
Henry Brecher ◽  
Heiner Lange

AbstractPatriot Hills is located at 80˚18’ S, 81˚22’W, at the southernmost end of the Heritage Range, Ellsworth Mountains, West Antarctica. A comparison of glacier elevation data and ice velocities obtained by the differential global positioning system in the period 1996–97 is presented. Ablation/accumulation rates measured at a network of stakes in Horseshoe Valley show average accumulation of 70 kg m–2 a–1 in the central part of the valley, and a maximum ablation of ∼170 kg m–2 a–1 at the edge of the blue-ice area, close to Patriot Hills. Changes in the surface elevation of the glacier measured at 81 stakes in the period 1995–97 show a mean thickening of +0.43±0.42ma–1, which, considering the uncertainties, indicates that the ice sheet around Patriot Hills is in near steady state. Surface velocities, in combination with ice thicknesses obtained by ground-based radio-echo sounding, are used to compute the ice flux across the Horseshoe Valley transect. A total outflow of 0.44 ±0.08km3 a–1 is obtained. Considering a catchment area for Horseshoe Valley of 1087 km2 upstream from the flow transect, and a net accumulation rate of 100 kg m–2 a–1, a total input of 0.11 ±0.04km3 a–1 by snow accumulation is obtained. Accepting a near-equilibrium condition for the ice sheet, the flux difference, i.e. 0.33 km3 a–1, must be supplied by flow from the inland ice sheet through ice cliffs located in mountain gaps in the Heritage Range. If Horseshoe Valley is not in steady state but is thickening, the positive mass balance could be due to increased snow accumulation or enhanced ice flow from the interior of the ice sheet. New data are needed to elucidate this.

2002 ◽  
Vol 34 ◽  
pp. 303-308 ◽  
Author(s):  
W. L. Wang ◽  
H. J. Zwally ◽  
W. Abdalati ◽  
S. Luo

AbstractAn anisotropic-ice flowline model is applied to a flowline through Swiss Camp (69.57° N, 49.28° W), West Greenland, to estimate the dates of internal layers detected by radio-echo sounding measurements. The effect of an anisotropic-ice fabric on ice flow is incorporated into the steady-state flowline model. The stress–strain-rate relationship for anisotropic ice is characterized by an enhancement factor based on the laboratory observations of ice deformation under combined compression and shear stresses. By using present-day data of accumulation rate, surface temperature, surface elevation and ice thickness along the flowline as model inputs, a very close agreement is found between the isochrones generated from the model and the observed internal layers with confirmed dates. The results indicate that this part of the Greenland ice sheet is primarily in steady state.


1979 ◽  
Vol 24 (90) ◽  
pp. 63-75 ◽  
Author(s):  
K. E. Rose

AbstractExtensive radio echo-sounding has mapped the part of West Antarctica between Byrd Station, the Whitmore Mountains, the Transantarctic Mountains, and the Ross Ice Shelf. The ice sheet in this area is dominated by five major sub-parallel ice streams (A–E), which are up to 100 km wide and extend inland from the grounding line of the Ross Ice Shelf for about 400 km. Their positions have been determined by crevassing seen on radio echo-sounding records, trimetrogon photographs, and Landsat imagery. The ice streams are characterized by their flat transverse cross-sections, while the intervening ice sheet exhibits domes and ridges. Ice flow lines are defined from the ice-surface contour pattern and the trend of the ice streams. It is apparent from this work that the flow line passing through Byrd Station joins ice stream D.The bedrock of the area is relatively smooth near the Ross Ice Shelf, becoming rougher near Byrd Station and especially so near the Whitmore Mountains. Bedrock troughs, which control the positions of the ice streams, are believed to have a tectonic origin.In this paper the role of the ice streams in the glaciological regime of West Antarctica is investigated from radio-echo data and estimates of balance velocity, basal shear stress, and basal temperatures.


2004 ◽  
Vol 39 ◽  
pp. 231-237 ◽  
Author(s):  
Eric Rignot ◽  
Robert H. Thomas ◽  
Pannir Kanagaratnam ◽  
Gino Casassa ◽  
Earl Frederick ◽  
...  

AbstractIn November–December 2002, a joint airborne experiment by Centro de Estudios Cientifícos and NASA flew over the Antarctic ice sheet to collect laser altimetry and radio-echo sounding data over glaciers flowing into the Amundsen Sea. A P-3 aircraft on loan from the Chilean Navy made four flights over Pine Island, Thwaites, Pope, Smith and Kohler glaciers, with each flight yielding 1.5–2 hours of data. The thickness measurements reveal that these glaciers flow into deep troughs, which extend far inland, implying a high potential for rapid retreat. Interferometric synthetic aperture radar data (InSAR) and satellite altimetry data from the European Remote-sensing Satellites (ERS-1/-2) show rapid grounding-line retreat and ice thinning of these glaciers. Using the new thickness data, we have reevaluated glacier fluxes and the present state of mass balance, which was previously estimated using ice thicknesses deduced largely from inversion of elevation data assuming hydrostatic equilibrium. The revised total ice discharge of 241 ± 5km3 a–1 exceeds snow accumulation by 81 ± 17 km3 a–1 of ice, equivalent to a sea-level rise of 0.21 ± 0.04 mma–1. This magnitude of ice loss is too large to be caused by atmospheric forcing and implies dynamic thinning of the glaciers. This is confirmed by ice-flow acceleration observed with InSAR. We attribute the flow acceleration and ice thinning to enhanced bottom melting of the ice shelves by a warmer ocean, which reduces buttressing of the glaciers, and in turn accelerates them out of balance.


1979 ◽  
Vol 24 (90) ◽  
pp. 63-75 ◽  
Author(s):  
K. E. Rose

AbstractExtensive radio echo-sounding has mapped the part of West Antarctica between Byrd Station, the Whitmore Mountains, the Transantarctic Mountains, and the Ross Ice Shelf. The ice sheet in this area is dominated by five major sub-parallel ice streams (A–E), which are up to 100 km wide and extend inland from the grounding line of the Ross Ice Shelf for about 400 km. Their positions have been determined by crevassing seen on radio echo-sounding records, trimetrogon photographs, and Landsat imagery. The ice streams are characterized by their flat transverse cross-sections, while the intervening ice sheet exhibits domes and ridges. Ice flow lines are defined from the ice-surface contour pattern and the trend of the ice streams. It is apparent from this work that the flow line passing through Byrd Station joins ice stream D.The bedrock of the area is relatively smooth near the Ross Ice Shelf, becoming rougher near Byrd Station and especially so near the Whitmore Mountains. Bedrock troughs, which control the positions of the ice streams, are believed to have a tectonic origin.In this paper the role of the ice streams in the glaciological regime of West Antarctica is investigated from radio-echo data and estimates of balance velocity, basal shear stress, and basal temperatures.


2011 ◽  
Vol 57 (206) ◽  
pp. 1119-1134 ◽  
Author(s):  
Felix NG ◽  
Edward C. King

AbstractRadar studies of firn on the ice sheets have revealed complex folds on its internal layering that form from the interplay of snow accumulation and ice flow. A mathematical theory for these fold structures is presented, for the case where the radar cross section lies along the ice-flow direction and where the accumulation rate and ice-flow velocity are time-invariant. Our model, which accounts for firn densification, shows how ‘information’ (the depth and slope of isochrones) propagates on the radargram to govern its layer undulations. This leads us to discover universal rules behind the pattern of layer slopes on a distance–age domain and understand why the loci of layer-fold hinges curve, emerge and combine on the radargram to form closed loops that delineate areas of rising and plunging isochrones. We also develop a way of retrieving the accumulation rate distribution and layer ages from steady isochrone patterns. Analysis of a radargram from the onset zone of Bindschadler Ice Stream, West Antarctica, indicates that ice flow and accumulation rates have been steady there for the past ∼400 years, and that spatial anomalies in the latter are coupled to surface topography induced by ice flow over the undulating ice-stream bed. The theory provides new concepts for the morphological interpretation of radargrams.


1989 ◽  
Vol 35 (121) ◽  
pp. 406-417 ◽  
Author(s):  
Niels Reeh

AbstractSimple analytical models are developed in order to study how up-stream variations in accumulation rate and ice thickness, and horizontal convergence/ divergence of the flow influence the age and annual layer-thickness profiles in a steady-state ice sheet. Generally, a decrease/increase of the accumulation rate and an increase/decrease of the ice thickness in the up-stream direction (i.e. opposite to the flow direction) results in older/younger ice at a given depth in the ice sheet than would result if the up-stream accumulation rate and ice thickness were constant along the flow line.Convergence/divergence of the up-stream flow will decrease/increase the effect of the accumulation-rate and ice-thickness gradients, whereas convergence/divergence has no influence at all on the age and layer-thickness profiles if the up-stream accumulation rate and ice thickness are constant along the flow line.A modified column-flow model, i.e. a model for which the strain-rate profile (or, equivalently, the horizontal velocity profile) is constant down to the depth corresponding to the Holocene/Wisconsinan transition 10 750 year BP., seems to work well for dating the ice back to 10 000–11 000 year B P. at sites in the slope regions of the Greenland ice sheet. For example, the model predicts the experimentally determined age profile at Dye 3 on the south Greenland ice sheet with a relative root-mean-square error of only 3% back to c. 10 700 year B.P. As illustrated by the Milcent location on the western slope of the central Greenland ice sheet, neglecting up-stream accumulation-rate and ice-thickness gradients, may lead to dating errors as large as 3000–000 years for c. 10 000 year old ice.However, even if these gradients are taken into account, the simple model fails to give acceptable ages for 10 000 year old ice at locations on slightly sloping ice ridges with strongly divergent flow, as for example the Camp Century location. The main reason for this failure is that the site of origin of the ice cannot be determined accurately enough by the simple models, if the flow is strongly divergent.With this exception, the simple models are well suited for dating the ice at locations where the available data or the required accuracy do not justify application of elaborate numerical models. The formulae derived for the age-depth profiles can easily be worked out on a pocket calculator, and in many cases will be a sensible alternative to using numerical flow models.


1997 ◽  
Vol 43 (143) ◽  
pp. 3-10 ◽  
Author(s):  
V.I. Morgan ◽  
C.W. Wookey ◽  
J. Li ◽  
T.D. van Ommen ◽  
W. Skinner ◽  
...  

AbstractThe aim of deep ice drilling on Law Dome, Antarctica, has been to exploit the special characteristics of Law Dome summit, i.e. low temperature and high accumulation near an ice divide, to obtain a high-resolution ice core for climatic/environmental studies of the Holocene and the Last Glacial Maximum (LGM). Drilling was completed in February 1993, when basal ice containing small fragments of rock was reached at a depth of 1196 m. Accurate ice dating, obtained by counting annual layers revealed by fine-detail δ18О, peroxide and electrical-conductivity measurements, is continuous down to 399 m, corresponding to a date of AD 1304. Sulphate concentration measurements, made around depths where conductivity tracing indicates volcanic fallout, allow confirmation of the dating (for Agung in 1963 and Tambora in 1815) or estimates of the eruption date from the ice dating (for the Kuwae, Vanuatu, eruption ~1457). The lower part of the core is dated by extrapolating the layer-counting using a simple model of the ice flow. At the LGM, ice-fabric measurements show a large decrease (250 to 14 mm2) in crystal size and a narrow maximum in c-axis vertically. The main zone of strong single-pole fabrics however, is located higher up in a broad zone around 900 m. Oxygen-isotope (δ18O) measurements show Holocene ice down to 1113 m, the LGM at 1133 m and warm (δ18O) about the same as Holocene) ice near the base of the ice sheet. The LGM/Holocene δ18O shift of 7.0‰, only ~1‰ larger than for Vostok, indicates that Law Dome remained an independent ice cap and was not overridden by the inland ice sheet in the Glacial.


2003 ◽  
Vol 36 ◽  
pp. 66-72 ◽  
Author(s):  
Martin Truffer ◽  
Keith A. Echelmeyer

AbstractFast-flowing ice streams and outlet glaciers provide the major avenues for ice flow from past and present ice sheets. These ice streams move faster than the surrounding ice sheet by a factor of 100 or more. Several mechanisms for fast ice-stream flow have been identified, leading to a spectrum of different ice-stream types. In this paper we discuss the two end members of this spectrum, which we term the “ice-stream” type (represented by the Siple Coast ice streams in West Antarctica) and the “isbræ” type (represented by Jakobshavn Isbræ in Greenland). The typical ice stream is wide, relatively shallow (∼1000 m), has a low surface slope and driving stress (∼10 kPa), and ice-stream location is not strongly controlled by bed topography. Fast flow is possible because the ice stream has a slippery bed, possibly underlain by weak, actively deforming sediments. The marginal shear zones are narrow and support most of the driving stress, and the ice deforms almost exclusively by transverse shear. The margins seem to be inherently unstable; they migrate, and there are plausible mechanisms for such ice streams to shut down. The isbræ type of ice stream is characterized by very high driving stresses, often exceeding 200 kPa. They flow through deep bedrock channels that are significantly deeper than the surrounding ice, and have steep surface slopes. Ice deformation includes vertical as well as lateral shear, and basal motion need not contribute significantly to the overall motion. The marginal shear zone stend to be wide relative to the isbræ width, and the location of isbræ and its margins is strongly controlled by bedrock topography. They are stable features, and can only shut down if the high ice flux cannot be supplied from the adjacent ice sheet. Isbræs occur in Greenland and East Antarctica, and possibly parts of Pine Island and Thwaites Glaciers, West Antarctica. In this paper, we compare and contrast the two types of ice streams, addressing questions such as ice deformation, basal motion, subglacial hydrology, seasonality of ice flow, and stability of the ice streams.


2008 ◽  
Vol 48 ◽  
pp. 100-102 ◽  
Author(s):  
Susanne L. Buchardt ◽  
Dorthe Dahl-Jensen

AbstractNo continuous record from Greenland of the Eemian interglacial period (130–115 ka BP) currently exists. However, a new ice-core drill site has been suggested at 77.449˚ N, 51.056˚Win north-west Greenland (North Eemian or NEEM). Radio-echo sounding images and flow model investigations indicate that an undisturbed Eemian record may be obtained at NEEM. In this work, a two-dimensional ice flow model with time-dependent accumulation rate and ice thickness is used to estimate the location of the Eemian layer at the new drill site. The model is used to simulate the ice flow along the ice ridge leading to the drill site. Unknown flow parameters are found through a Monte Carlo analysis of the flow model constrained by observed isochrones in the ice. The results indicate that the Eemian layer is approximately 60m thick and that its base is located approximately 100m above bedrock.


2017 ◽  
Author(s):  
Mai Winstrup ◽  
Paul Vallelonga ◽  
Helle A. Kjær ◽  
Tyler J. Fudge ◽  
James E. Lee ◽  
...  

Abstract. We present a 2700-year annually resolved timescale for the Roosevelt Island Climate Evolution (RICE) ice core, and reconstruct a past snow accumulation history for the coastal sector of the Ross Ice Shelf in West Antarctica. The timescale was constructed by identifying annual layers in multiple ice-core impurity records, employing both manual and automated counting approaches, and constitutes the top part of the Roosevelt Island Ice Core Chronology 2017 (RICE17). The maritime setting of Roosevelt Island results in high sulfate influx from sea salts and marine biogenic emissions, which prohibits a routine detection of volcanic eruptions in the ice-core records. This led to the use of non-traditional chronological techniques for validating the timescale: RICE was synchronized to the WAIS Divide ice core, on the WD2014 timescale, using volcanic attribution based on direct measurements of ice-core acidity, as well as records of globally-synchronous, centennial-scale variability in atmospheric methane concentrations. The RICE accumulation history suggests stable values of 0.25 m water equivalent (w.e.) per year until around 1260 CE. Uncertainties in the correction for ice flow thinning of annual layers with depth do not allow a firm conclusion about long-term trends in accumulation rates during this early period but from 1260 CE to the present, accumulation rate trends have been consistently negative. The decrease in accumulation rates has been increasingly rapid over the last centuries, with the decrease since 1950 CE being more than 7 times greater than the average over the last 300 years. The current accumulation rate of 0.22 ± 0.06 m w.e. yr−1 (average since 1950 CE, ±1σ) is 1.49 standard deviations (86th percentile) below the mean of 50-year average accumulation rates observed over the last 2700 years.


Sign in / Sign up

Export Citation Format

Share Document