scholarly journals A new velocity map for Byrd Glacier, East Antarctica, from sequential ASTER satellite imagery

2005 ◽  
Vol 41 ◽  
pp. 71-76 ◽  
Author(s):  
Leigh Stearns ◽  
Gordon Hamilton

AbstractNew ice-velocity measurements are obtained for the main trunk of Byrd Glacier, East Antarctica, using recently acquired Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. The velocities are derived from the application of a cross-correlation technique to sequential images acquired in 2000 and 2001. Images were co-registered and ortho-rectified with the aid of a digital elevation model (DEM) generated from ASTER stereo imagery. This paper outlines the process of DEM generation, image co-registration and correction, and the application of the cross-correlation technique to obtain ice velocities. Comparison of the new velocity map with earlier measurements of velocity from 1978 indicates that the glacier has undergone a substantial deceleration between observations. Portions of the glacier flowing at speeds of ~850ma–1 in 1978/79 were flowing at ~650ma–1 in 2000/01. The cause of this change in ice dynamics is not known, but the observation shows that East Antarctic outlet glaciers can undergo substantial changes on relatively short timescales.

1997 ◽  
Vol 24 ◽  
pp. 255-261 ◽  
Author(s):  
Cecilie Rolstad ◽  
Jostein Amlien ◽  
Jon-Ove Hagen ◽  
Bengt Lundén

A field of vectors showing the average velocity of the surging glacier Osbornebreen, Svalbard, was determined by comparing sequential SPOT (Système pour l’Observation de la Terre) and Landsat thematic mapper images. Crevasses which developed during the initial phase of the surge in the winter of 1986–87 were tracked using a fast Fourier chip cross-correlation technique. A digital elevation model (DEM) was developed using digital photogrammetry on aerial photographs from 1990. This new DEM was compared with a map drawn in 1966. The velocity field could be almost entirely determined with 1 month separation of the images, but only partly determined with images 1 year apart, due to changes of the crevasse pattern. The velocity field is similar to that found for Kronebreen, a continuously fast-moving tidewater glacier. No distinct zones of compressive flow were present and the data gave no evidence of a compression zone/surge front traveling downstream. The velocity field, the rapid advance of the terminus and the development of transverse crevasses in the upper accumulation area within a 6 month period may indicate that the surge developed as a zone of extension starting near the terminus and propagating quickly upstream. The crevasse pattern in the images is therefore interpreted to be the result of the extension zone traveling upstream, and, as the whole glacier starts to slide, the crevasse pattern alters according to the bedrock topography.


1997 ◽  
Vol 24 ◽  
pp. 255-261 ◽  
Author(s):  
Cecilie Rolstad ◽  
Jostein Amlien ◽  
Jon-Ove Hagen ◽  
Bengt Lundén

A field of vectors showing the average velocity of the surging glacier Osbornebreen, Svalbard, was determined by comparing sequential SPOT (Système pour l’Observation de la Terre) and Landsat thematic mapper images. Crevasses which developed during the initial phase of the surge in the winter of 1986–87 were tracked using a fast Fourier chip cross-correlation technique. A digital elevation model (DEM) was developed using digital photogrammetry on aerial photographs from 1990. This new DEM was compared with a map drawn in 1966. The velocity field could be almost entirely determined with 1 month separation of the images, but only partly determined with images 1 year apart, due to changes of the crevasse pattern. The velocity field is similar to that found for Kronebreen, a continuously fast-moving tidewater glacier. No distinct zones of compressive flow were present and the data gave no evidence of a compression zone/surge front traveling downstream. The velocity field, the rapid advance of the terminus and the development of transverse crevasses in the upper accumulation area within a 6 month period may indicate that the surge developed as a zone of extension starting near the terminus and propagating quickly upstream. The crevasse pattern in the images is therefore interpreted to be the result of the extension zone traveling upstream, and, as the whole glacier starts to slide, the crevasse pattern alters according to the bedrock topography.


2019 ◽  
Vol 622 ◽  
pp. A139 ◽  
Author(s):  
P. Mollière ◽  
I. A. G. Snellen

Context. The cross-correlation technique is a well-tested method for exoplanet characterization, having lead to the detection of various molecules, to constraints on atmospheric temperature profiles, wind speeds, and planetary spin rates. A new, potentially powerful application of this technique is the measurement of atmospheric isotope ratios. In particular D/H can give unique insights into the formation and evolution of planets, and their atmospheres. Aims. In this paper we aim to study the detectability of molecular isotopologues in the high-dispersion spectra of exoplanet atmospheres, to identify the optimal wavelength ranges to conduct such studies, and to predict the required observational efforts – both with current and future ground-based instrumentation. Methods. High-dispersion (R = 100 000) thermal emission spectra, and in some cases reflection spectra, were simulated by self-consistent modeling of the atmospheric structures and abundances of exoplanets over a wide range of effective temperatures. These were synthetically observed with a telescope equivalent to the VLT and/or ELT, and analyzed using the cross-correlation technique, resulting in signal-to-noise ratio predictions for the 13CO, HDO, and CH3D isotopologues. Results. We find that for the best observable exoplanets, 13CO is well in range of current telescopes. We predict it will be most favorably detectable at 2.4 μm, just longward of the wavelength regions probed by several high-dispersion spectroscopic observations presented in the literature. CH3D can be best targeted at 4.7 μm, and may be detectable using 40 m-class telescopes for planets below 600 K in equilibrium temperature. In this case, the sky background becomes the dominating noise source for self-luminous planets. HDO is best targeted at 3.7 μm, and is less affected by sky background noise. 40 m-class telescopes may lead to its detection for planets with Tequ below 900 K. It could already be in the range of current 8 m-class telescopes in the case of quenched methane abundances. Finally, if Proxima Cen b is water-rich, the HDO isotopologue could be detected with the ELT in ~1 night of observing time in its reflected-light spectrum. Conclusions. Isotopologues will soon be a part of the exoplanet characterisation tools. Measuring D/H in exoplanets, and ratios of other isotopes, could become a prime science case for the first-light instrument METIS on the European ELT, especially for nearby temperate rocky and ice giant planets. This can provide unique insights in their history of icy-body enrichment and atmospheric evaporation processes.


2012 ◽  
Vol 8 (S295) ◽  
pp. 105-108
Author(s):  
William G. Hartley ◽  
Omar Almaini ◽  
Alice Mortlock ◽  
Chris Conselice ◽  

AbstractWe use the UKIDSS Ultra-Deep Survey, the deepest degree-scale near-infrared survey to date, to investigate the clustering of star-forming and passive galaxies to z ~ 3.5. Our new measurements include the first determination of the clustering for passive galaxies at z > 2, which we achieve using a cross-correlation technique. We find that passive galaxies are the most strongly clustered, typically hosted by massive dark matter halos with Mhalo > 1013 M⊙ irrespective of redshift or stellar mass. Our findings are consistent with models in which a critical halo mass determines the transition from star-forming to passive galaxies.


2009 ◽  
Vol 63 (11) ◽  
pp. 1197-1203 ◽  
Author(s):  
E. D. Emmons ◽  
A. Tripathi ◽  
J. A. Guicheteau ◽  
S. D. Christesen ◽  
A. W. Fountain

Raman chemical imaging (RCI) has been used to detect and identify explosives in contaminated fingerprints. Bright-field imaging is used to identify regions of interest within a fingerprint, which can then be examined to determine their chemical composition using RCI and fluorescence imaging. Results are presented where explosives in contaminated fingerprints are identified and their spatial distributions are obtained. Identification of explosives is obtained using Pearson's cosine cross-correlation technique using the characteristic region (500–1850 cm−1) of the spectrum. This study shows the ability to identify explosives nondestructively so that the fingerprint remains intact for further biometric analysis. Prospects for forensic examination of contaminated fingerprints are discussed.


2021 ◽  
Author(s):  
Alexandre Allil ◽  
Fábio Dutra ◽  
Cesar Cosenza Carvalho ◽  
Alex Dante ◽  
Regina Allil ◽  
...  

2020 ◽  
Vol 495 (2) ◽  
pp. 1706-1723 ◽  
Author(s):  
Richard A Battye ◽  
Michael L Brown ◽  
Caitlin M Casey ◽  
Ian Harrison ◽  
Neal J Jackson ◽  
...  

ABSTRACT The SuperCLuster Assisted Shear Survey (SuperCLASS) is a legacy programme using the e-MERLIN interferometric array. The aim is to observe the sky at L-band (1.4 GHz) to a r.m.s. of $7\, \mu {\rm Jy}\,$beam−1 over an area of $\sim 1\, {\rm deg}^2$ centred on the Abell 981 supercluster. The main scientific objectives of the project are: (i) to detect the effects of weak lensing in the radio in preparation for similar measurements with the Square Kilometre Array (SKA); (ii) an extinction free census of star formation and AGN activity out to z ∼ 1. In this paper we give an overview of the project including the science goals and multiwavelength coverage before presenting the first data release. We have analysed around 400 h of e-MERLIN data allowing us to create a Data Release 1 (DR1) mosaic of $\sim 0.26\, {\rm deg}^2$ to the full depth. These observations have been supplemented with complementary radio observations from the Karl G. Jansky Very Large Array (VLA) and optical/near infrared observations taken with the Subaru, Canada-France-Hawaii, and Spitzer Telescopes. The main data product is a catalogue of 887 sources detected by the VLA, of which 395 are detected by e-MERLIN and 197 of these are resolved. We have investigated the size, flux, and spectral index properties of these sources finding them compatible with previous studies. Preliminary photometric redshifts, and an assessment of galaxy shapes measured in the radio data, combined with a radio-optical cross-correlation technique probing cosmic shear in a supercluster environment, are presented in companion papers.


Sign in / Sign up

Export Citation Format

Share Document