scholarly journals The effects of El Niño and La Niña on snow and avalanche patterns in British Columbia, Canada, and central Chile

2013 ◽  
Vol 59 (216) ◽  
pp. 783-792 ◽  
Author(s):  
D.M. McClung

AbstractEl Niño and La Niña affect global climate and atmospheric circulation to determine winter temperature and precipitation patterns. Both winter temperatures and the associated precipitation patterns have effects on mountain snow deposition and snow avalanche occurrences. Approximately 25 000 slab avalanches from 30 winters were analyzed in relation to snowfall patterns contrasted for El Niño and La Niña winters for two avalanche areas with different snow climates in British Columbia (BC), Canada. La Niña winters were shown to produce more snow, more avalanches and a higher percentage of dry avalanches than wet avalanches. The data and analysis show that the avalanche patterns depend on the altitude and snow climate. Analysis of snowfall and accident data from the Andes of Chile suggests behavior opposite to BC. El Niño winters in central Chile produced the most snow and, by inference, the most avalanches. This paper is the first to show the links of El Niño and La Niña to snow avalanche activity.

2022 ◽  
Author(s):  
Paul C. Rivera

An alternative physical mechanism is proposed to describe the occurrence of the episodic El Nino Southern Oscillation (ENSO) and La Nina climatic phenomena. This is based on the earthquake-perturbed obliquity change (EPOCH) model previously discovered as a major cause of the global climate change problem. Massive quakes impart a very strong oceanic force that can move the moon which in turn pulls the earth’s axis and change the planetary obliquity. Analysis of the annual geomagnetic north-pole shift and global seismic data revealed this previously undiscovered force. Using a higher obliquity in the global climate model EdGCM and constant greenhouse gas forcing showed that the seismic-induced polar motion and associated enhanced obliquity could be the major mechanism governing the mysterious climate anomalies attributed to El Nino and La Nina cycles.


2020 ◽  
Vol 101 (4) ◽  
pp. E409-E426 ◽  
Author(s):  
Qiaohong Sun ◽  
Chiyuan Miao ◽  
Amir AghaKouchak ◽  
Iman Mallakpour ◽  
Duoying Ji ◽  
...  

Abstract Predicting the changes in teleconnection patterns and related hydroclimate extremes can provide vital information necessary to adapt to the effects of the El Niño–Southern Oscillation (ENSO). This study uses the outputs of global climate models to assess the changes in ENSO-related dry/wet patterns and the frequency of severe dry/wet events. The results show anomalous precipitation responding asymmetrically to La Niña and El Niño, indicating the teleconnections may not simply be strengthened. A “dry to drier, wet to wetter” annual anomalous precipitation pattern was projected during La Niña phases in some regions, with drier conditions over southern North America, southern South America, and southern central Asia, and wetter conditions in Southeast Asia and Australia. These results are robust, with agreement from the 26 models and from a subset of 8 models selected for their good performance in capturing observed patterns. However, we did not observe a similar strengthening of anomalous precipitation during future El Niño phases, for which the uncertainties in the projected influences are large. Under the RCP4.5 emissions scenario, 45 river basins under El Niño conditions and 39 river basins under La Niña conditions were predicted to experience an increase in the frequency of severe dry events; similarly, 59 river basins under El Niño conditions and 61 river basins under La Niña conditions were predicted to have an increase in the frequency of severe wet events, suggesting a likely increase in the risk of floods. Our results highlight the implications of changes in ENSO patterns for natural hazards, disaster management, and engineering infrastructure.


2018 ◽  
Vol 175 (6) ◽  
pp. 2293-2306 ◽  
Author(s):  
Cristiano Prestrelo de Oliveira ◽  
Luis Aímola ◽  
Tércio Ambrizzi ◽  
Ana Carolina Vasques Freitas

2016 ◽  
Vol 129 (4) ◽  
pp. 399 ◽  
Author(s):  
Jeff Marliave
Keyword(s):  
El Niño ◽  
El Nino ◽  
La Niña ◽  

In May 2012, fragments of Cloud Sponge, Aphrocallistes vastus, that had been cut by fishing line were deposited in an array of boulders on the seabed near the parent sponge on the southwest shore of Hutt Island in Howe Sound near Vancouver, British Columbia. Open breaks in the transplanted fragments and parent sponge healed within 12 months. The fragments reattached to rock within 24 months. Previous observers of similar events reported no healing and death of damaged sponges. However, previous observations occurred during warm El Niño periods, which may be associated with higher stress leading to unsuccessful healing. In contrast, my current observations took place in cooler La Niña conditions, which may have promoted greater resilience and better healing.


2020 ◽  
Vol 12 (12) ◽  
pp. 2037
Author(s):  
Kenneth J. Tobin ◽  
Roberto Torres ◽  
Marvin E. Bennett ◽  
Jianzhi Dong ◽  
Wade T. Crow

Root zone soil moisture (RZSM) is one of the least-monitored variables within the hydrologic cycle. Given the importance of RZSM to agriculture, more effort is needed to understand the potential impacts of the El Niño southern oscillation (ENSO), Pacific decadal oscillation (PDO), and Atlantic multidecadal oscillation (AMO) on this critical variable. This study focused on the CONtiguous United States (CONUS) RZSM (0 to 40 cm depth) over nearly three decades (1992 to 2018). Basic trend analysis with the Mann–Kendall test and wavelet transform coherence (WTC) was utilized. The RZSM product examined was Soil MERGE (SMERGE 2.0). More CONUS pixels exhibited drying (56 to 75%) versus wetting (25 to 44%) trends between 1992 and 2018. Seasonal wetting trends were observed particularly during winter in the Southwest and Northwest regions associated with El Nino and La Nina episodes, respectively. The noted long-term RZSM trends are more clearly attributable to oceanic-atmospheric teleconnections than global climate change. The most significant result was the strong drying trend in central CONUS reflected a shift to La Nina and cool PDO conditions during the 2000s, further amplified by a change to positive AMO corresponding with this period.


2021 ◽  
Author(s):  
Xin Yan ◽  
Rui Wang ◽  
Zhenguo Niu

Abstract Wetland vegetation dynamics are of vital importance for comprehending changes in ecosystem structure. Under the background of global climate change, it is still unclear the change trends of wetland vegetation in China, and whether there are differences between the response of wetland vegetation and non-wetland vegetation to climate change. Based on Global Inventory Modeling and Mapping Studies (GIMMS) NDVI3g, NOAA Vegetation Health Products (VHP) and climate data, this study explored the response of wetland vegetation to climate change in China from 1981 to 2015. The results show that: 1) NDVI of wetland vegetation in China shows a downward trend on the whole after the year of 2004. 2) In water-limited zones, wetland vegetation NDVI is positive correlated with precipitation; while in temperature-limited zones, it is positive correlated with temperature. 3) El Nino and La Nina may affect wetland vegetation NDVI. The greater impact of La Nina phenomenon than El Nino phenomenon is the possible reason for the upward trend of wetland vegetation NDVI, while the greater impact of El Nino phenomenon than La Nina phenomenon may be the reason for the downward trend of NDVI. 4) The response of wetland vegetation and non-wetland vegetation to climate change is significantly different. Non-wetland vegetation responds more significantly to climate change than wetland vegetation.


2019 ◽  
Vol 3 ◽  
pp. 1219
Author(s):  
Oki Adrianto ◽  
Sudirman Sudirman ◽  
Suwandi Suwandi
Keyword(s):  
El Niño ◽  
El Nino ◽  
La Niña ◽  

Perekonomian Provinsi Nusa Tenggara Timur secara sektoral masih didominasi sektor pertanian.Tanaman jagung menjadi salah satu produksi tanaman pangan terbesar berdasarkan data dari Dinas Pertanian dan Perkebunan Provinsi Nusa Tenggara Timur tahun 2015. Peningkatan produksi pertanian dapat dilakukan melalui berbagai strategi adaptasi dan upaya penanganan bencana, salah satu upaya tersebut adalah dengan penyediaan informasi iklim terkait penentuan daerah-daerah rawan kekeringan. Tujuan dari penelitian ini adalah untuk mengetahui sebaran wilayah rawan kekeringan lahan jagung bulanan di Provinsi Nusa Tenggara Timur saat kondisi El Nino dan La Nina dengan periodeisasi bulanan januari hingga desember. Data yang digunakan dalam penelitian ini adalah data curah hujan rata rata bulanan di 19 pos hujan di Provinsi Nusa Tenggara Timur dan suhu udara rata-rata bulanan dihitung menggunakan pendekatan teori Brack dengan titik referensi Stasiun Klimatologi Lasiana Kupang. Periode dari masing-masing data yang digunakan adalah dari tahun 1991 dan 1997 digunakan sebagai tahun El Nino dan tahun 1999 dan 2010 digunakan sebagai tahun La Nina. Metode yang digunakan untuk menentukan tingkat rawan kekeringan dengan menggunakan pembobotan berdasarkan penjumlahan bobot tipe iklim Oldeman dan bobot ketersediaan air tanah. Hasil penelitian menunjukkan sebaran daerah kekeringan di Provinsi Nusa Tenggara Timurpada tahun el nino lebih luas dibandingkan tahun la nina.


2018 ◽  
Vol 1 ◽  
pp. e2018014
Author(s):  
Samya de Freitas MOREIRA ◽  
Cleiciane Silva da CONCEIÇÃO ◽  
Milla Cristina Santos da CRUZ ◽  
Antônio PEREIRA JÚNIOR
Keyword(s):  
El Niño ◽  
El Nino ◽  
La Niña ◽  

Sign in / Sign up

Export Citation Format

Share Document