scholarly journals Grounding-line dynamics and margin lakes

2014 ◽  
Vol 55 (66) ◽  
pp. 87-96 ◽  
Author(s):  
M.J. Fried ◽  
C.L. Hulbe ◽  
M.A. Fahnestock

AbstractAt both corners of the now stagnant Kamb Ice Stream (KIS, West Antarctica) outlet, shear margins of different ages confine wedge-shaped areas with relatively flat, smooth surfaces that stagnated before the main trunk of the ice stream. We identify these features as lakes or past lakes, and consider scenarios for their development in a regional history of ongoing adjustment to grounding-line position. We focus here on the centuries leading up to the recent stagnation of KIS, a time when its grounding line appears to have advanced >100km from an earlier upstream location. Starting from stagnation of Crary Ice Rise and changes in the grounding zone of Whillans Ice Stream, we trace feedbacks associated with local thickening, ice grounding and thickness transients that both advance the grounding line and leave remnant lakes in their wake. These lakes in turn promote the development of secondary margins that may appear as ‘margin jumps’ in the ice record.

2005 ◽  
Vol 51 (175) ◽  
pp. 620-636 ◽  
Author(s):  
Robert Bindschadler ◽  
Patricia Vornberger ◽  
Laurence Gray

AbstractData from the mouth of the decelerating Whillans Ice Stream (WIS), West Antarctica, spanning 42 years are reviewed. Deceleration has continued, with local areas of both thinning and thickening occurring. The mean thinning rate is 0.48 ± 0.77 ma–1. No consistent overall pattern is observed. Ice thickens immediately upstream of Crary Ice Rise where deceleration and divergence are strongest, suggesting expanded upstream influence of the ice rise. Thinning is prevalent on the Ross Ice Shelf. Grounding-line advance at a rate of 0.3 km a–1 is detected in a few locations. Basal stresses vary across an ice-stream transect with a zone of enhanced flow at the margin. Marginal shear is felt at the ice-stream center. Mass-balance values are less negative, but larger errors of earlier measurements mask any possible temporal pattern. Comparisons of the recent flow field with flow stripes suggest WIS contributes less ice to the deep subglacial channel carved by Mercer Ice Stream and now flows straighter. The general lack of geometric changes suggests that the regional velocity decrease is due to changing basal conditions.


2020 ◽  
Vol 47 (15) ◽  
Author(s):  
R. A. Venturelli ◽  
M. R. Siegfried ◽  
K. A. Roush ◽  
W. Li ◽  
J. Burnett ◽  
...  

2016 ◽  
Author(s):  
Alexander A. Robel ◽  
Christian Schoof ◽  
Eli Tziperman

Abstract. In many ice streams, basal resistance varies in space and time due to the dynamically-evolving properties of subglacial till. These variations can cause internally-generated oscillations in ice stream flow. However, the potential for such variations in basal properties are not considered by conventional theories of grounding line stability on retrograde bed slopes, which assume that bed properties are static in time. Using a numerical flowline model, we show how internally-generated, transient variations in ice stream state interact with retrograde bed slopes. In contrast to predictions from the theory of the marine ice sheet instability, our simulated grounding line is able to persist and reverse direction of migration on a retrograde bed when undergoing oscillations in the grounding line position. In turn, the presence of a retrograde bed may also suppress or reduce the amplitude of internal oscillations in ice stream state. We explore the physical mechanisms responsible for these behaviors and discuss the implications for observed grounding line migration in West Antarctica.


2002 ◽  
Vol 48 (163) ◽  
pp. 552-558 ◽  
Author(s):  
Marjorie Schmeltz ◽  
Eric Rignot ◽  
Todd K. Dupont ◽  
Douglas R. MacAyeal

AbstractWe use a finite-element model of coupled ice-stream/ice-shelf flow to study the sensitivity of Pine Island Glacier, West Antarctica, to changes in ice-shelf and basal conditions. By tuning a softening coefficient of the ice along the glacier margins, and a basal friction coefficient controlling the distribution of basal shear stress underneath the ice stream, we are able to match model velocity to that observed with interferometric synthetic aperture radar (InSAR). We use the model to investigate the effect of small perturbations on ice flow. We find that a 5.5–13% reduction in our initial ice-shelf area increases the glacier velocity by 3.5–10% at the grounding line. The removal of the entire ice shelf increases the grounding-line velocity by > 70%. The changes in velocity associated with ice-shelf reduction are felt several tens of km inland. Alternatively, a 5% reduction in basal shear stress increases the glacier velocity by 13% at the grounding line. By contrast, softening of the glacier side margins would have to be increased a lot more to produce a comparable change in ice velocity. Hence, both the ice-shelf buttressing and the basal shear stress contribute significant resistance to the flow of Pine Island Glacier.


1990 ◽  
Vol 14 ◽  
pp. 273-277 ◽  
Author(s):  
S.N. Stephenson ◽  
R.A. Bindschadler

Ten Landsat Thematic Mapper images together show Ice Streams E, D and most of Ice Stream C on Siple Coast, West Antarctica. The images are interpreted to reveal aspects of both spatial and temporal evolution of the ice streams. Onset of ice-stream flow appears to occur at distributed sites within the ice-stream catchment, and the apparent enhanced flow continues in channels until they join, forming the main ice stream. Most crevassing on these ice streams is associated with features of horizontal dimensions between 5 and 20 km. We suggest these features are caused by bed structures which may be an important source of restraint to ice flow, similar to ice rumples on ice shelves. A pattern of features near the grounding line of the now-stagnant Ice Stream C are interpreted as having formed because there was a period of reduced flux before the ice stream stopped.


1990 ◽  
Vol 14 ◽  
pp. 273-277 ◽  
Author(s):  
S.N. Stephenson ◽  
R.A. Bindschadler

Ten Landsat Thematic Mapper images together show Ice Streams E, D and most of Ice Stream C on Siple Coast, West Antarctica. The images are interpreted to reveal aspects of both spatial and temporal evolution of the ice streams. Onset of ice-stream flow appears to occur at distributed sites within the ice-stream catchment, and the apparent enhanced flow continues in channels until they join, forming the main ice stream. Most crevassing on these ice streams is associated with features of horizontal dimensions between 5 and 20 km. We suggest these features are caused by bed structures which may be an important source of restraint to ice flow, similar to ice rumples on ice shelves. A pattern of features near the grounding line of the now-stagnant Ice Stream C are interpreted as having formed because there was a period of reduced flux before the ice stream stopped.


2009 ◽  
Vol 50 (52) ◽  
pp. 35-40 ◽  
Author(s):  
Helena J. Sykes ◽  
Tavi Murray ◽  
Adrian Luckman

AbstractEvans Ice Stream, West Antarctica, has five tributaries and a complex grounding zone. The grounding zone of Evans Ice Stream, between the landward and seaward limits of tidal flexing, was mapped using SAR interferometry. The width of the mapped grounding zone was compared with that derived from an elastic beam model, and the tidal height changes derived from interferometry were compared with the results of a tidal model. Results show that in 1994 and 1996 the Evans grounding zone was located up to 100 km upstream of its location in the BEDMAP dataset. The grounding line of Evans Ice Stream is subjected to 5 m vertical tidal forcing, which would clearly affect ice-stream flow.


2001 ◽  
Vol 47 (157) ◽  
pp. 303-313 ◽  
Author(s):  
N. A. Nereson ◽  
C. F. Raymond

AbstractMeasurements of the surface and internal layer geometry from ice-penetrating radar and global positioning system surveys on three inter-ice-stream ridges in West Antarctica (Siple Dome, ridge DE and ridge BC) are examined with ice-flow models to infer (1) the history of the divide position at each site and (2) the spatial pattern of accumulation across the ridges. We find that the divide position is most steady at Siple Dome, somewhat steady at ridge DE and highly variable at ridge BC. Data from Siple Dome and ridge DE show evidence for steady northward motion of the ice divide for the past few thousand years. The layers beneath ridge BC suggest a 5 km northward shift of the divide position within the past several hundred years. Assuming the divide shifts are all due to changing elevation of the bounding ice streams, we infer the relative elevation history for segments of Ice Streams B–E. The northward displacement of the divide for all ridges implies a progressive relative thinning of the ice streams from E to B, with most dramatic recent thinning (100 m in <103 years) of Ice Stream B relative to Ice Stream C. Analysis of the internal layer pattern across the ridges indicates a south–north accumulation gradient with higher accumulation rates on the northern flanks of the ridges in all three cases. The inferred accumulation distribution is nearly uniform on the northern flanks, decreases sharply within a few ice thicknesses across the divides, and then decreases gradually farther to the south. The north/south decrease is strongest for ridge DE and weakest for ridge BC. This spatial pattern and the reduction in gradient strength with distance from the Amundsen Sea is consistent with the hypothesis that storms from the Amundsen Sea carry moisture first south then west over West Antarctica and deposit more snow on the windward side of ridges due to orographic lifting. This pattern has been stable for at least the past several thousand years.


Author(s):  
J. Paul Winberry ◽  
Sridhar Anandakrishnan ◽  
Richard B. Alley ◽  
Robert A. Bindschadler ◽  
Matt A. King

2009 ◽  
Vol 50 (51) ◽  
pp. 42-48 ◽  
Author(s):  
E.C. King

AbstractRutford Ice Stream, West Antarctica, drains a catchment of >45 000 km2 into the Ronne Ice Shelf through a 26 km wide, 2.4 km deep subglacial trough adjacent to the Ellsworth Mountains. Forty-two per cent of its catchment boundary is common with Pine Island Glacier, where rapid change to ice dynamics is currently underway. These changes may eventually affect adjacent catchments such as Rutford. Radar sounding data were acquired over the Rutford ice-drainage basin that show the internal structure. In particular, distinctive reflector groups were identified that mark the boundaries between four different flow elements. The flow-margin reflector groups include curvilinear events that cross-cut isochrones and are therefore likely to be post-depositional. These reflections may arise from crystal orientation fabrics generated by localized strain in a flow margin. One of the sectors of the ice-drainage basin supplies the largest share (38%) of the ice volume flux through the main trunk of Rutford Ice Stream. This sector may be preferentially affected by continuing surface lowering in the Pine Island Glacier catchment.


Sign in / Sign up

Export Citation Format

Share Document