scholarly journals Marine ice-sheet profiles and stability under Coulomb basal conditions

2015 ◽  
Vol 61 (226) ◽  
pp. 205-215 ◽  
Author(s):  
Victor C. Tsai ◽  
Andrew L. Stewart ◽  
Andrew F. Thompson

AbstractThe behavior of marine-terminating ice sheets, such as the West Antarctic ice sheet, is of interest due to the possibility of rapid grounding-line retreat and consequent catastrophic loss of ice. Critical to modeling this behavior is a choice of basal rheology, where the most popular approach is to relate the ice-sheet velocity to a power-law function of basal stress. Recent experiments, however, suggest that near-grounding line tills exhibit Coulomb friction behavior. Here we address how Coulomb conditions modify ice-sheet profiles and stability criteria. The basal rheology necessarily transitions to Coulomb friction near the grounding line, due to low effective stresses, leading to changes in ice-sheet properties within a narrow boundary layer. Ice-sheet profiles ‘taper off’ towards a flatter upper surface, compared with the power-law case, and basal stresses vanish at the grounding line, consistent with observations. In the Coulomb case, the grounding-line ice flux also depends more strongly on flotation ice thickness, which implies that ice sheets are more sensitive to climate perturbations. Furthermore, with Coulomb friction, the ice sheet grounds stably in shallower water than with a power-law rheology. This implies that smaller perturbations are required to push the grounding line into regions of negative bed slope, where it would become unstable. These results have important implications for ice-sheet stability in a warming climate.

2001 ◽  
Vol 47 (157) ◽  
pp. 271-282 ◽  
Author(s):  
Richard C.A. Hindmarsh ◽  
E. Le Meur

AbstractMarine ice sheets with mechanics described by the shallow-ice approximation by definition do not couple mechanically with the shelf. Such ice sheets are known to have neutral equilibria. We consider the implications of this for their dynamics and in particular for mechanisms which promote marine ice-sheet retreat. The removal of ice-shelf buttressing leading to enhanced flow in grounded ice is discounted as a significant influence on mechanical grounds. Sea-level rise leading to reduced effective pressures under ice streams is shown to be a feasible mechanism for producing postglacial West Antarctic ice-sheet retreat but is inconsistent with borehole evidence. Warming thins the ice sheet by reducing the average viscosity but does not lead to grounding-line retreat. Internal oscillations either specified or generated via a MacAyeal–Payne thermal mechanism promote migration. This is a noise-induced drift phenomenon stemming from the neutral equilibrium property of marine ice sheets. This migration occurs at quite slow rates, but these are sufficiently large to have possibly played a role in the dynamics of the West Antarctic ice sheet after the glacial maximum. Numerical experiments suggest that it is generally true that while significant changes in thickness can be caused by spatially uniform changes, spatial variability coupled with dynamical variability is needed to cause margin movement.


2018 ◽  
Vol 857 ◽  
pp. 648-680 ◽  
Author(s):  
Samuel S. Pegler

A long-standing open question in glaciology concerns the propensity for ice sheets that lie predominantly submerged in the ocean (marine ice sheets) to destabilise under buoyancy. This paper addresses the processes by which a buoyancy-driven mechanism for the retreat and ultimate collapse of such ice sheets – the marine ice sheet instability – is suppressed by lateral stresses acting on its floating component (the ice shelf). The key results are to demonstrate the transition between a mode of stable (easily reversible) retreat along a stable steady-state branch created by ice-shelf buttressing to tipped (almost irreversible) retreat across a critical parametric threshold. The conditions for triggering tipped retreat can be controlled by the calving position and other properties of the ice-shelf profile and can be largely independent of basal stress, in contrast to principles established from studies of unbuttressed grounding-line dynamics. The stability and recovery conditions introduced by lateral stresses are analysed by developing a method of constructing grounding-line stability (bifurcation) diagrams, which provide a rapid assessment of the steady-state positions, their natures and the conditions for secondary grounding, giving clear visualisations of global stabilisation conditions. A further result is to reveal the possibility of a third structural component of a marine ice sheet that lies intermediate to the fully grounded and floating components. The region forms an extended grounding area in which the ice sheet lies very close to flotation, and there is no clearly distinguished grounding line. The formation of this region generates an upsurge in buttressing that provides the most feasible mechanism for reversal of a tipped grounding line. The results of this paper provide conceptual insight into the phenomena controlling the stability of the West Antarctic Ice Sheet, the collapse of which has the potential to dominate future contributions to global sea-level rise.


Geology ◽  
2012 ◽  
Vol 41 (1) ◽  
pp. 35-38 ◽  
Author(s):  
C.-D. Hillenbrand ◽  
G. Kuhn ◽  
J. A. Smith ◽  
K. Gohl ◽  
A. G. C. Graham ◽  
...  

Author(s):  
Colm Ó Cofaigh

Over the last two decades, marine science, aided by technological advances in sediment coring, geophysical imaging and remotely operated submersibles, has played a major role in the investigation of contemporary and former ice sheets. Notable advances have been achieved with respect to reconstructing the extent and flow dynamics of the large polar ice sheets and their mid-latitude counterparts during the Quaternary from marine geophysical and geological records of landforms and sediments on glacier-influenced continental margins. Investigations of the deep-sea ice-rafted debris record have demonstrated that catastrophic collapse of large (10 5 –10 6  km 2 ) ice-sheet drainage basins occurred on millennial and shorter time scales and had a major influence on oceanography. In the last few years, increasing emphasis has been placed on understanding physical processes at the ice–ocean interface, particularly at the grounding line, and on determining how these processes affect ice-sheet stability. This remains a major challenge, however, owing to the logistical constraints imposed by working in ice-infested polar waters and ice-shelf cavities. Furthermore, despite advances in reconstructing the Quaternary history of mid- and high-latitude ice sheets, major unanswered questions remain regarding West Antarctic ice-sheet stability, and the long-term offshore history of the East Antarctic and Greenland ice sheets remains poorly constrained. While these are major research frontiers in glaciology, and ones in which marine science has a pivotal role to play, realizing such future advances will require an integrated collaborative approach between oceanographers, glaciologists, marine geologists and numerical modellers.


1979 ◽  
Vol 24 (90) ◽  
pp. 500 ◽  
Author(s):  
C. R. Bentley ◽  
L. Greischar

Abstract Taking various retreat-rates for the presumed grounded ice sheet in the Ross embayment during Wisconsin time, as calculated by Thomas (Thomas and Bentley, 1978), and assuming a time constant of 4400 years for isostatic rebound, a sea-floor uplift of 100±50 m still to be expected in the grid western part of the Ross Ice Shelf can be calculated. The expected uplift diminishes from grid west to grid east, and is probably negligible in the eastern half of the shelf area. There are extensive areas near the present grounding line where the water depth beneath the shelf is less than 100 m, so that uplift would lead to grounding. As grounding occurred, the neighboring ice shelf would thicken, causing grounding to advance farther. This process would probably extend the grounding line to a position running grid north-eastward across the shelf from the seaward end of Roosevelt Island, deeply indented by the extensions of the present ice streams. Floating ice would remain in the grid south-eastern half of the shelf.


1979 ◽  
Vol 24 (90) ◽  
pp. 167-177 ◽  
Author(s):  
Robert H. Thomas

AbstractMarine ice sheets rest on land that, for the most part, is below sea-level. Ice that flows across the grounding line, where the ice sheet becomes afloat, either calves into icebergs or forms a floating ice shelf joined to the ice sheet. At the grounding line there is a transition from ice-sheet dynamics to ice-shelf dynamics, and the creep-thinning rate in this region is very sensitive to sea depth; rising sea-level causes increased thinning-rates and grounding-line retreat, falling sea-level has the reverse effect. If the bedrock slopes down towards the centre of the ice sheet there may be only two stable modes: a freely-floating ice shelf or a marine ice sheet that extends to the edge of the continental shelf. Once started, collapse of such an ice sheet to form an ice shelf may take place extremely rapidly. Ice shelves which form in embayments of a marine ice sheet, or which are partially grounded, have a stabilizing influence since ice flowing across the grounding line has to push the ice shelf past its sides. Retreat of the grounding line tends to enlarge the ice shelf, which ultimately may become large enough to prevent excessive outflow from the ice sheet so that a new equilibrium grounding line is established; removal of the ice shelf would allow retreat to continue. During the late-Wisconsin glacial maximum there may have been marine ice sheets in the northern hemisphere but the only current example is the West Antarctic ice sheet. This is buttressed by the Ross and Ronne Ice Shelves, and if climatic warming were to prohibit the existence of these ice shelves then the ice sheet would collapse. Field observations suggest that, at present, the ice sheet may be advancing into parts of the Ross Ice Shelf. Such advance, however, would not ensure the security of the ice sheet since ice streams that drain to the north appear to flow directly into the sea with little or no ice shelf to buttress them. If these ice streams do not flow over a sufficiently high bedrock sill then they provide the most likely avenues for ice-sheet retreat.


2015 ◽  
Vol 9 (2) ◽  
pp. 1887-1942 ◽  
Author(s):  
S. L. Cornford ◽  
D. F. Martin ◽  
A. J. Payne ◽  
E. G. Ng ◽  
A. M. Le Brocq ◽  
...  

Abstract. We use the BISICLES adaptive mesh ice sheet model to carry out one, two, and three century simulations of the fast-flowing ice streams of the West Antarctic Ice Sheet. Each of the simulations begins with a geometry and velocity close to present day observations, and evolves according to variation in meteoric ice accumulation, ice shelf melting, and mesh resolution. Future changes in accumulation and melt rates range from no change, through anomalies computed by atmosphere and ocean models driven by the E1 and A1B emissions scenarios, to spatially uniform melt rates anomalies that remove most of the ice shelves over a few centuries. We find that variation in the resulting ice dynamics is dominated by the choice of initial conditions, ice shelf melt rate and mesh resolution, although ice accumulation affects the net change in volume above flotation to a similar degree. Given sufficient melt rates, we compute grounding line retreat over hundreds of kilometers in every major ice stream, but the ocean models do not predict such melt rates outside of the Amundsen Sea Embayment until after 2100. Sensitivity to mesh resolution is spurious, and we find that sub-kilometer resolution is needed along most regions of the grounding line to avoid systematic under-estimates of the retreat rate, although resolution requirements are more stringent in some regions – for example the Amundsen Sea Embayment – than others – such as the Möller and Institute ice streams.


2015 ◽  
Vol 9 (4) ◽  
pp. 1579-1600 ◽  
Author(s):  
S. L. Cornford ◽  
D. F. Martin ◽  
A. J. Payne ◽  
E. G. Ng ◽  
A. M. Le Brocq ◽  
...  

Abstract. We use the BISICLES adaptive mesh ice sheet model to carry out one, two, and three century simulations of the fast-flowing ice streams of the West Antarctic Ice Sheet, deploying sub-kilometer resolution around the grounding line since coarser resolution results in substantial underestimation of the response. Each of the simulations begins with a geometry and velocity close to present-day observations, and evolves according to variation in meteoric ice accumulation rates and oceanic ice shelf melt rates. Future changes in accumulation and melt rates range from no change, through anomalies computed by atmosphere and ocean models driven by the E1 and A1B emissions scenarios, to spatially uniform melt rate anomalies that remove most of the ice shelves over a few centuries. We find that variation in the resulting ice dynamics is dominated by the choice of initial conditions and ice shelf melt rate and mesh resolution, although ice accumulation affects the net change in volume above flotation to a similar degree. Given sufficient melt rates, we compute grounding line retreat over hundreds of kilometers in every major ice stream, but the ocean models do not predict such melt rates outside of the Amundsen Sea Embayment until after 2100. Within the Amundsen Sea Embayment the largest single source of variability is the onset of sustained retreat in Thwaites Glacier, which can triple the rate of eustatic sea level rise.


1979 ◽  
Vol 24 (90) ◽  
pp. 167-177 ◽  
Author(s):  
Robert H. Thomas

AbstractMarine ice sheets rest on land that, for the most part, is below sea-level. Ice that flows across the grounding line, where the ice sheet becomes afloat, either calves into icebergs or forms a floating ice shelf joined to the ice sheet. At the grounding line there is a transition from ice-sheet dynamics to ice-shelf dynamics, and the creep-thinning rate in this region is very sensitive to sea depth; rising sea-level causes increased thinning-rates and grounding-line retreat, falling sea-level has the reverse effect. If the bedrock slopes down towards the centre of the ice sheet there may be only two stable modes: a freely-floating ice shelf or a marine ice sheet that extends to the edge of the continental shelf. Once started, collapse of such an ice sheet to form an ice shelf may take place extremely rapidly. Ice shelves which form in embayments of a marine ice sheet, or which are partially grounded, have a stabilizing influence since ice flowing across the grounding line has to push the ice shelf past its sides. Retreat of the grounding line tends to enlarge the ice shelf, which ultimately may become large enough to prevent excessive outflow from the ice sheet so that a new equilibrium grounding line is established; removal of the ice shelf would allow retreat to continue. During the late-Wisconsin glacial maximum there may have been marine ice sheets in the northern hemisphere but the only current example is the West Antarctic ice sheet. This is buttressed by the Ross and Ronne Ice Shelves, and if climatic warming were to prohibit the existence of these ice shelves then the ice sheet would collapse. Field observations suggest that, at present, the ice sheet may be advancing into parts of the Ross Ice Shelf. Such advance, however, would not ensure the security of the ice sheet since ice streams that drain to the north appear to flow directly into the sea with little or no ice shelf to buttress them. If these ice streams do not flow over a sufficiently high bedrock sill then they provide the most likely avenues for ice-sheet retreat.


1985 ◽  
Vol 24 (3) ◽  
pp. 257-267 ◽  
Author(s):  
C. J. Van der Veen

A numerical model was designed to study the stability of a marine ice sheet, and used to do some basic experiments. The ice-shelf/ice-sheet interaction enters through the flow law in which the longitudinal stress is also taken into account. Instead of applying the model to some (measured) profile and showing that this is unstable (as is common practice in other studies), an attempt is made to simulate a whole cycle of growth and retreat of a marine ice sheet, although none of the model sheets is particularly sensitive to changes in environmental conditions. The question as to what might happen to the West Antarctic Ice Sheet in the near future when a climatic warming can be expecied as a result of the CO2 effect, seems to be open for discussion again. From the results presented in this paper one can infer that a collapse, caused by increased melting on the ice shelves, is not very likely.


Sign in / Sign up

Export Citation Format

Share Document