scholarly journals Ice sheets viewed from the ocean: the contribution of marine science to understanding modern and past ice sheets

Author(s):  
Colm Ó Cofaigh

Over the last two decades, marine science, aided by technological advances in sediment coring, geophysical imaging and remotely operated submersibles, has played a major role in the investigation of contemporary and former ice sheets. Notable advances have been achieved with respect to reconstructing the extent and flow dynamics of the large polar ice sheets and their mid-latitude counterparts during the Quaternary from marine geophysical and geological records of landforms and sediments on glacier-influenced continental margins. Investigations of the deep-sea ice-rafted debris record have demonstrated that catastrophic collapse of large (10 5 –10 6  km 2 ) ice-sheet drainage basins occurred on millennial and shorter time scales and had a major influence on oceanography. In the last few years, increasing emphasis has been placed on understanding physical processes at the ice–ocean interface, particularly at the grounding line, and on determining how these processes affect ice-sheet stability. This remains a major challenge, however, owing to the logistical constraints imposed by working in ice-infested polar waters and ice-shelf cavities. Furthermore, despite advances in reconstructing the Quaternary history of mid- and high-latitude ice sheets, major unanswered questions remain regarding West Antarctic ice-sheet stability, and the long-term offshore history of the East Antarctic and Greenland ice sheets remains poorly constrained. While these are major research frontiers in glaciology, and ones in which marine science has a pivotal role to play, realizing such future advances will require an integrated collaborative approach between oceanographers, glaciologists, marine geologists and numerical modellers.

2001 ◽  
Vol 47 (157) ◽  
pp. 271-282 ◽  
Author(s):  
Richard C.A. Hindmarsh ◽  
E. Le Meur

AbstractMarine ice sheets with mechanics described by the shallow-ice approximation by definition do not couple mechanically with the shelf. Such ice sheets are known to have neutral equilibria. We consider the implications of this for their dynamics and in particular for mechanisms which promote marine ice-sheet retreat. The removal of ice-shelf buttressing leading to enhanced flow in grounded ice is discounted as a significant influence on mechanical grounds. Sea-level rise leading to reduced effective pressures under ice streams is shown to be a feasible mechanism for producing postglacial West Antarctic ice-sheet retreat but is inconsistent with borehole evidence. Warming thins the ice sheet by reducing the average viscosity but does not lead to grounding-line retreat. Internal oscillations either specified or generated via a MacAyeal–Payne thermal mechanism promote migration. This is a noise-induced drift phenomenon stemming from the neutral equilibrium property of marine ice sheets. This migration occurs at quite slow rates, but these are sufficiently large to have possibly played a role in the dynamics of the West Antarctic ice sheet after the glacial maximum. Numerical experiments suggest that it is generally true that while significant changes in thickness can be caused by spatially uniform changes, spatial variability coupled with dynamical variability is needed to cause margin movement.


2018 ◽  
Vol 857 ◽  
pp. 648-680 ◽  
Author(s):  
Samuel S. Pegler

A long-standing open question in glaciology concerns the propensity for ice sheets that lie predominantly submerged in the ocean (marine ice sheets) to destabilise under buoyancy. This paper addresses the processes by which a buoyancy-driven mechanism for the retreat and ultimate collapse of such ice sheets – the marine ice sheet instability – is suppressed by lateral stresses acting on its floating component (the ice shelf). The key results are to demonstrate the transition between a mode of stable (easily reversible) retreat along a stable steady-state branch created by ice-shelf buttressing to tipped (almost irreversible) retreat across a critical parametric threshold. The conditions for triggering tipped retreat can be controlled by the calving position and other properties of the ice-shelf profile and can be largely independent of basal stress, in contrast to principles established from studies of unbuttressed grounding-line dynamics. The stability and recovery conditions introduced by lateral stresses are analysed by developing a method of constructing grounding-line stability (bifurcation) diagrams, which provide a rapid assessment of the steady-state positions, their natures and the conditions for secondary grounding, giving clear visualisations of global stabilisation conditions. A further result is to reveal the possibility of a third structural component of a marine ice sheet that lies intermediate to the fully grounded and floating components. The region forms an extended grounding area in which the ice sheet lies very close to flotation, and there is no clearly distinguished grounding line. The formation of this region generates an upsurge in buttressing that provides the most feasible mechanism for reversal of a tipped grounding line. The results of this paper provide conceptual insight into the phenomena controlling the stability of the West Antarctic Ice Sheet, the collapse of which has the potential to dominate future contributions to global sea-level rise.


Geology ◽  
2010 ◽  
Vol 38 (5) ◽  
pp. 411-414 ◽  
Author(s):  
Michael J. Bentley ◽  
Christopher J. Fogwill ◽  
Anne M. Le Brocq ◽  
Alun L. Hubbard ◽  
David E. Sugden ◽  
...  

2015 ◽  
Vol 61 (226) ◽  
pp. 205-215 ◽  
Author(s):  
Victor C. Tsai ◽  
Andrew L. Stewart ◽  
Andrew F. Thompson

AbstractThe behavior of marine-terminating ice sheets, such as the West Antarctic ice sheet, is of interest due to the possibility of rapid grounding-line retreat and consequent catastrophic loss of ice. Critical to modeling this behavior is a choice of basal rheology, where the most popular approach is to relate the ice-sheet velocity to a power-law function of basal stress. Recent experiments, however, suggest that near-grounding line tills exhibit Coulomb friction behavior. Here we address how Coulomb conditions modify ice-sheet profiles and stability criteria. The basal rheology necessarily transitions to Coulomb friction near the grounding line, due to low effective stresses, leading to changes in ice-sheet properties within a narrow boundary layer. Ice-sheet profiles ‘taper off’ towards a flatter upper surface, compared with the power-law case, and basal stresses vanish at the grounding line, consistent with observations. In the Coulomb case, the grounding-line ice flux also depends more strongly on flotation ice thickness, which implies that ice sheets are more sensitive to climate perturbations. Furthermore, with Coulomb friction, the ice sheet grounds stably in shallower water than with a power-law rheology. This implies that smaller perturbations are required to push the grounding line into regions of negative bed slope, where it would become unstable. These results have important implications for ice-sheet stability in a warming climate.


1994 ◽  
Vol 20 ◽  
pp. 336-340 ◽  
Author(s):  
Philippe Huybrechts

A model of the Antarctic ice sheet has been used to simulate the ice sheet in warmer climates, in order to investigate what kind of ice-sheet geometries one can reasonably expect under what kind of climatic conditions and to discover which physical mechanisms may be involved to explain them. The results of these experiments reveal the considerable stability of; in particular, the East Antarctic ice sheet. It would require a temperature rise of between 17 and 20 K above present levels to remove this ice sheet from the subglacial basins in the interior of the continent and of 25 K to melt down the Antarctic ice sheet completely. For a temperature rise below 5 K, the model actually predicts a larger Antarctic ice sheet than today as a result of increased snowfall, whereas the west Antarctic ice sheet was round not to survive temperatures more than 8–10 K above present values. Furthermore, basal temperature conditions in these experiments point to the problems involved in raising the base of the ice sheet to the pressure-melting point over the large areas necessary to consider the possibility of sliding instability. These results bear on a lively debate regarding the late Cenozoic glacial history of Antarctica. Particularly, based on these findings, it is difficult to reconcile a highly variable East Antarctic ice sheet until the Pliocene with modest warming recorded in, for instance, the deep-sea records for the late Neogene.


Geology ◽  
2011 ◽  
Vol 39 (5) ◽  
pp. e240-e240 ◽  
Author(s):  
Michael J. Bentley ◽  
David E. Sugden ◽  
Christopher J. Fogwill ◽  
Anne M. Le Brocq ◽  
Alun L. Hubbard ◽  
...  

1994 ◽  
Vol 20 ◽  
pp. 336-340 ◽  
Author(s):  
Philippe Huybrechts

A model of the Antarctic ice sheet has been used to simulate the ice sheet in warmer climates, in order to investigate what kind of ice-sheet geometries one can reasonably expect under what kind of climatic conditions and to discover which physical mechanisms may be involved to explain them. The results of these experiments reveal the considerable stability of; in particular, the East Antarctic ice sheet. It would require a temperature rise of between 17 and 20 K above present levels to remove this ice sheet from the subglacial basins in the interior of the continent and of 25 K to melt down the Antarctic ice sheet completely. For a temperature rise below 5 K, the model actually predicts a larger Antarctic ice sheet than today as a result of increased snowfall, whereas the west Antarctic ice sheet was round not to survive temperatures more than 8–10 K above present values. Furthermore, basal temperature conditions in these experiments point to the problems involved in raising the base of the ice sheet to the pressure-melting point over the large areas necessary to consider the possibility of sliding instability. These results bear on a lively debate regarding the late Cenozoic glacial history of Antarctica. Particularly, based on these findings, it is difficult to reconcile a highly variable East Antarctic ice sheet until the Pliocene with modest warming recorded in, for instance, the deep-sea records for the late Neogene.


2021 ◽  
Vol 15 (1) ◽  
pp. 459-478
Author(s):  
Martim Mas e Braga ◽  
Jorge Bernales ◽  
Matthias Prange ◽  
Arjen P. Stroeven ◽  
Irina Rogozhina

Abstract. Studying the response of the Antarctic ice sheets during periods when climate conditions were similar to the present can provide important insights into current observed changes and help identify natural drivers of ice sheet retreat. In this context, the marine isotope substage 11c (MIS11c) interglacial offers a suitable scenario, given that during its later portion orbital parameters were close to our current interglacial. Ice core data indicate that warmer-than-present temperatures lasted for longer than during other interglacials. However, the response of the Antarctic ice sheets and their contribution to sea level rise remain unclear. We explore the dynamics of the Antarctic ice sheets during this period using a numerical ice sheet model forced by MIS11c climate conditions derived from climate model outputs scaled by three glaciological and one sedimentary proxy records of ice volume. Our results indicate that the East and West Antarctic ice sheets contributed 4.0–8.2 m to the MIS11c sea level rise. In the case of a West Antarctic Ice Sheet collapse, which is the most probable scenario according to far-field sea level reconstructions, the range is reduced to 6.7–8.2 m independently of the choices of external sea level forcing and millennial-scale climate variability. Within this latter range, the main source of uncertainty arises from the sensitivity of the East Antarctic Ice Sheet to a choice of initial ice sheet configuration. We found that the warmer regional climate signal captured by Antarctic ice cores during peak MIS11c is crucial to reproduce the contribution expected from Antarctica during the recorded global sea level highstand. This climate signal translates to a modest threshold of 0.4 ∘C oceanic warming at intermediate depths, which leads to a collapse of the West Antarctic Ice Sheet if sustained for at least 4000 years.


2021 ◽  
Author(s):  
Martim Mas e Braga ◽  
Jorge Bernales ◽  
Matthias Prange ◽  
Arjen P. Stroeven ◽  
Irina Rogozhina

<p><span><span>The Marine Isotope Substage 11c (MIS11c) interglacial (425 – 395 thousand years before present) is a useful analogue to climate conditions that can be expected in the near future, and can provide insights on the natural response of the Antarctic ice sheets to a moderate, yet long lasting warming period. However, its response to the warming of MIS11c and consequent contribution to global sea level rise still remains unclear. We explore the dynamics of the Antarctic ice sheets during this period using a numerical ice-sheet model forced by MIS11c climate conditions derived from climate model outputs scaled by three ice core and one sedimentary proxy records of ice volume. We identify a tipping point beyond which oceanic warming becomes the dominant forcing of ice-sheet retreat, and where collapse of the West Antarctic Ice Sheet is attained when a threshold of 0.4 </span></span><sup><span><span>o</span></span></sup><span><span>C oceanic warming relative to Pre-Industrial levels is sustained for at least 4 thousand years. Conversely, its eastern counterpart remains relatively stable, as it is mostly grounded above sea level. Our results suggest a total sea level contribution from the East and West Antarctic ice sheets of 4.0 – 8.2 m during MIS11c. In the case of a West Antarctic Ice Sheet collapse, which is the most probable scenario according to far-field sea-level reconstructions, this range is reduced to 6.7 – 8.2 m, and mostly reflects uncertainties regarding the initial configuration of the East Antarctic Ice Sheet. </span></span></p>


Sign in / Sign up

Export Citation Format

Share Document