scholarly journals Ice Fabrics and Petrography, Meserve Glacier, Antarctica

1974 ◽  
Vol 13 (68) ◽  
pp. 285-306 ◽  
Author(s):  
P.W. Anderton

Results of petrographic and fabric analysis of fine-grained cold ice from the tongue of Meserve Glacier, Antarctica, are described. Most of the basal ice is remarkably uniform in texture and shows an optic-axis fabric with a single strong maximum, which is consistent with the steady-state conditions of flow. Within 0.5 m of the ice–rock interface, irregularities in the bed cause flow perturbations which are correlated with recrystallization and changes in fabric of the ice. Optic-axis fabrics in the basal ice show close symmetry relationships with dimensional fabric and deformation symmetry. Grain-size of the ice increases towards the surface of the glacier and the single maximum of the optic-axis fabric undergoes a rotation about the flow vector. In the near surface, where strain-rates are relatively much lower, the optic-axis fabric symmetry is not closely related to either deformation symmetry or the dimensional fabric. Syntectonic recrystallization of ice throughout the glacier tongue characteristically produces a strong single-maximum fabric, the orientation of which in relation to the stress field is apparently determined by stress level. Under steady-state conditions of flow, the strength of the maximum also appears to be a function of stress level.

1974 ◽  
Vol 13 (68) ◽  
pp. 285-306 ◽  
Author(s):  
P.W. Anderton

Results of petrographic and fabric analysis of fine-grained cold ice from the tongue of Meserve Glacier, Antarctica, are described. Most of the basal ice is remarkably uniform in texture and shows an optic-axis fabric with a single strong maximum, which is consistent with the steady-state conditions of flow. Within 0.5 m of the ice–rock interface, irregularities in the bed cause flow perturbations which are correlated with recrystallization and changes in fabric of the ice. Optic-axis fabrics in the basal ice show close symmetry relationships with dimensional fabric and deformation symmetry. Grain-size of the ice increases towards the surface of the glacier and the single maximum of the optic-axis fabric undergoes a rotation about the flow vector. In the near surface, where strain-rates are relatively much lower, the optic-axis fabric symmetry is not closely related to either deformation symmetry or the dimensional fabric. Syntectonic recrystallization of ice throughout the glacier tongue characteristically produces a strong single-maximum fabric, the orientation of which in relation to the stress field is apparently determined by stress level. Under steady-state conditions of flow, the strength of the maximum also appears to be a function of stress level.


1980 ◽  
Vol 25 (92) ◽  
pp. 195-214 ◽  
Author(s):  
Roger Leb. Hooke ◽  
Peter J. Hudleston

AbstractAt a depth of about 75 m in the lower part of the accumulation area of the Barnes Ice Cap there is a change from fine-grained ice with a weakly-oriented c-axis fabric to coarser ice with a broad single-maximum fabric. At a depth of about 150 m the single maximum becomes elongate perpendicular to the direction of bubble elongation, and then splits into two distinct maxima making an angle of about 40–45° with respect to one another. At greater depths a third and finally a fourth maximum appear, forming the well known diamond pattern. Mean crystal size does not seem to increase in the transitions from one to two and thence to three maxima, but it may become more uniform. Crystal size does increase in the transition from three to four maxima, however. At the base of the glacier there is a 10–20 m thick layer of unusually-bubbly, fine-grained white ice with a strong single-maximum fabric.The depths to the transitions increase up-glacier and in place of the single-maximum fabric a small-circle pattern is found. Down-glacier the depths to the transitions decrease, systematically eliminating the higher zones. Thus in the lower part of the ablation area, ice with a four-maximum fabric appears at the surface.The independent variables governing these fabric transitions appear to be temperature T, stress τ, and cumulative strain ³oc. In a tentative stability diagram showing the fields in which given fabrics are stable in T–τ–³oc space, multiple-maximum fabrics occur at high temperatures (> —10°C) and at moderate to high stresses, weakly-oriented fabrics at low stresses or low cumulative strains, broad single-maximum fabrics at moderate stresses or moderate cumulative strains, and strong single-maximum fabrics at high stresses or large cumulative strains.


1980 ◽  
Vol 25 (92) ◽  
pp. 195-214 ◽  
Author(s):  
Roger Leb. Hooke ◽  
Peter J. Hudleston

AbstractAt a depth of about 75 m in the lower part of the accumulation area of the Barnes Ice Cap there is a change from fine-grained ice with a weakly-orientedc-axis fabric to coarser ice with a broad single-maximum fabric. At a depth of about 150 m the single maximum becomes elongate perpendicular to the direction of bubble elongation, and then splits into two distinct maxima making an angle of about 40–45° with respect to one another. At greater depths a third and finally a fourth maximum appear, forming the well known diamond pattern. Mean crystal size does not seem to increase in the transitions from one to two and thence to three maxima, but it may become more uniform. Crystal size does increase in the transition from three to four maxima, however. At the base of the glacier there is a 10–20 m thick layer of unusually-bubbly, fine-grained white ice with a strong single-maximum fabric.The depths to the transitions increase up-glacier and in place of the single-maximum fabric a small-circle pattern is found. Down-glacier the depths to the transitions decrease, systematically eliminating the higher zones. Thus in the lower part of the ablation area, ice with a four-maximum fabric appears at the surface.The independent variables governing these fabric transitions appear to be temperatureT, stressτ, and cumulative strain³oc. In a tentative stability diagram showing the fields in which given fabrics are stable inT–τ–³ocspace, multiple-maximum fabrics occur at high temperatures (> —10°C) and at moderate to high stresses, weakly-oriented fabrics at low stresses or low cumulative strains, broad single-maximum fabrics at moderate stresses or moderate cumulative strains, and strong single-maximum fabrics at high stresses or large cumulative strains.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Sarwesh Parbat ◽  
Zheng Min ◽  
Li Yang ◽  
Minking Chyu

Abstract In the present paper, two lattice geometries suitable for near surface and double wall cooling were developed and tested. The first type of unit cell consisted of six ligaments of 0.5 mm diameter joined at a common vertex near the middle. The second type of unit cell was derived from the first type by adding four mutually perpendicular ligaments in the middle plane. Two lattice configurations, referred to as L1 and L2, respectively, were obtained by repeating the corresponding unit cell in streamwise and spanwise directions in an inline fashion. Test coupons consisting of these lattice geometries embedded inside rectangular cooling channel with dimensions of 2.54 mm height, 38.07 mm width, and 38.1 mm in length were fabricated using Inconel 718 powder and selective laser sintering (SLS) process. The heat transfer and pressure drop performance was then evaluated using steady-state tests with constant wall temperature boundary condition and for channel Reynolds number ranging from 2800 to 15,000. The lattices depicted a higher heat transfer compared with a smooth channel and both the heat transfer and pressure drop increased with a decrease in the porosity from L1 to L2. Steady-state conjugate numerical results revealed formation of prominent vortical structures in the inter-unit cell spaces, which diverted the flow toward the top end wall and created an asymmetric heat transfer between the two end walls. In conclusion, these lattice structures provided an augmented heat transfer while favorably redistributing the coolant within channel.


1980 ◽  
Vol 17 (4) ◽  
pp. 473-486 ◽  
Author(s):  
Jean-Marie Konrad ◽  
Norbert R. Morgenstern

This study reveals that a freezing soil can be characterized by two parameters, the segregation-freezing temperature Ts and the overall permeability of the frozen fringe [Formula: see text]. During unsteady heat flow, the variation of these parameters with temperature produces rhythmic ice banding in fine-grained soils. At the onset of steady-state conditions, freezing tests conducted at a fixed warm end temperature showed that Ts was independent of the cold side step temperature. In addition, a model is presented that indicates how the overall permeability of the frozen fringe can be calculated without detailed measurements at the scale of the frozen fringe. It is also constant in the tests reported here.


2014 ◽  
Vol 11 (14) ◽  
pp. 3721-3728 ◽  
Author(s):  
J. Y. Tang ◽  
W. J. Riley

Abstract. Representation of gaseous diffusion in variably saturated near-surface soils is becoming more common in land biogeochemical models, yet the formulations and numerical solution algorithms applied vary widely. We present three different but equivalent formulations of the dual-phase (gaseous and aqueous) tracer diffusion transport problem that is relevant to a wide class of volatile tracers in land biogeochemical models. Of these three formulations (i.e., the gas-primary, aqueous-primary, and bulk-tracer-based formulations), we contend that the gas-primary formulation is the most convenient for modeling tracer dynamics in biogeochemical models. We then provide finite volume approximation to the gas-primary equation and evaluate its accuracy against three analytical models: one for steady-state soil CO2 dynamics, one for steady-state soil CH4 dynamics, and one for transient tracer diffusion from a constant point source into two different sequentially aligned medias. All evaluations demonstrated good accuracy of the numerical approximation. We expect our result will standardize an efficient mechanistic numerical method for solving relatively simple, multi-phase, one-dimensional diffusion problems in land models.


1982 ◽  
Vol 28 (98) ◽  
pp. 35-42 ◽  
Author(s):  
J. Jouzel ◽  
R. A. Souchez

AbstractA model for the isotopic composition in δD and δ18O of ice formed by refreezing at the glacier sole is developed. This model predicts relatively well the distribution of points representing samples from basal layers of an Arctic and an Alpine glacier on a δD–δ18O diagram. The frozen fraction which is the part of the liquid that refreezes can be determined for each basal ice layer. This may have implications on the study of the ice–water system at the ice–rock interface.


2005 ◽  
Vol 51 (173) ◽  
pp. 307-312 ◽  
Author(s):  
Sarah B. Das ◽  
Richard B. Alley

AbstractSurface melting rarely occurs across most of the Antarctic ice sheet, away from the warmer coastal regions. Nonetheless, isolated melt features are preserved in the firn and ice in response to infrequent and short-lived melting events. An understanding of the formation and occurrence of these melt layers will help us to interpret records of past melt occurrences from polar ice cores such as the Siple Dome ice-core record from West Antarctica. A search in the near-surface firn in West Antarctica found that melt features are extremely rare, and consist of horizontal, laterally continuous, one to a few millimeter thick, ice layers with few air bubbles. The melt layers found date from the 1992/93 and 1991/92 summers. Field experiments to investigate changes in stratigraphy taking place during melt events reproduced melt features as seen in the natural stratigraphy. Melting conditions of varying intensity were created by passively heating the near-surface air for varying lengths of time inside a clear plastic hotbox. Melt layers formed due entirely to preferential flow and subsequent refreezing of meltwater from the surface into near-surface, fine-grained, crust layers. Continuous melt layers were formed experimentally when positive-degree-day values exceeded 1ºC-day, a value corresponding well with air-temperature records from automatic weather station sites where melt layers formed in the recent past.


Sign in / Sign up

Export Citation Format

Share Document