scholarly journals Pressures Inside Freezing Water Drops

1969 ◽  
Vol 8 (53) ◽  
pp. 301-309 ◽  
Author(s):  
P. J. Visagie

A small quartz Bourdon tube was employed to measure the pressures that develop inside 7 and 10 mm diameter water drops freezing in stirred cold liquid baths. In general, the pressure repeatedly rose and then was relieved by cracks in the ice shell as freezing proceeded. The cracking pressure tended to increase with the shell thickness and was dependent on the freezing rate. Pressures up to 76 bar were observed. The effect of the concentration of dissolved gas was investigated. Empirical relationships were found relating cracking pressure to the internal radius of an ice shell and to the average temperature gradient across its thickness.

1969 ◽  
Vol 8 (53) ◽  
pp. 301-309 ◽  
Author(s):  
P. J. Visagie

A small quartz Bourdon tube was employed to measure the pressures that develop inside 7 and 10 mm diameter water drops freezing in stirred cold liquid baths. In general, the pressure repeatedly rose and then was relieved by cracks in the ice shell as freezing proceeded. The cracking pressure tended to increase with the shell thickness and was dependent on the freezing rate. Pressures up to 76 bar were observed. The effect of the concentration of dissolved gas was investigated. Empirical relationships were found relating cracking pressure to the internal radius of an ice shell and to the average temperature gradient across its thickness.


2020 ◽  
Vol 77 (3) ◽  
pp. 556-563 ◽  
Author(s):  
Naomi K. Pleizier ◽  
Charlotte Nelson ◽  
Steven J. Cooke ◽  
Colin J. Brauner

Hydrostatic pressure is known to protect fish from damage by total dissolved gas (TDG) supersaturation, but empirical relationships are lacking. In this study we demonstrate the relationship between depth, TDG, and gas bubble trauma (GBT). Hydroelectric dams generate TDG supersaturation that causes bubble growth in the tissues of aquatic animals, resulting in sublethal and lethal effects. We exposed fish to 100%, 115%, 120%, and 130% TDG at 16 and 63 cm of depth and recorded time to 50% loss of equilibrium and sublethal symptoms. Our linear model of the log-transformed time to 50% LOE (R2 = 0.94) was improved by including depth. Based on our model, a depth of 47 cm compensated for the effects of 4.1% (±1.3% SE) TDG supersaturation. Our experiment reveals that once the surface threshold for GBT from TDG supersaturation is known, depth protects rainbow trout (Oncorhynchus mykiss) from GBT by 9.7% TDG supersaturation per metre depth. Our results can be used to estimate the impacts of TDG on fish downstream of dams and to develop improved guidelines for TDG.


Icarus ◽  
2021 ◽  
pp. 114617
Author(s):  
Ross R. Maguire ◽  
Nicholas C. Schmerr ◽  
Vedran Lekic ◽  
Terry A. Hurford ◽  
Lenore Dai ◽  
...  

Astrobiology ◽  
2017 ◽  
Vol 17 (9) ◽  
pp. 941-954 ◽  
Author(s):  
Marie Běhounková ◽  
Ondřej Souček ◽  
Jaroslav Hron ◽  
Ondřej Čadek

2016 ◽  
Vol 61 (11) ◽  
pp. 973-979
Author(s):  
B. Romanyuk ◽  
◽  
V. Melnik ◽  
V. Popov ◽  
O. Korotchenkov ◽  
...  

Author(s):  
Yoichi Utanohara ◽  
Michio Murase ◽  
Akihiro Masui ◽  
Ryo Inomata ◽  
Yuji Kamiya

The structural integrity of the containment vessel (CV) for a pressurized water reactor (PWR) plant under a loss-of-coolant accident is evaluated by a safety analysis code that uses the average temperature of gas phase in the CV during reactor operation as an initial condition. Since the estimation of the average temperature by measurement is difficult, this paper addressed the numerical simulation for the temperature distribution in the CV of an operating PWR plant. The simulation considered heat generation of the equipment, the ventilation and air conditioning systems (VAC), heat transfer to the structure, and heat release to the CV exterior based on the design values of the PWR plant. The temperature increased with a rise in height within the CV and the flow field transformed from forced convection to natural convection. Compared with the measured temperature data in the actual PWR plant, predicted temperatures in the lower regions agreed well with the measured values. The temperature differences became larger above the fourth floor, and the temperature inside the steam generator (SG) loop chamber on the fourth floor was most strongly underestimated, −16.2  K due to the large temperature gradient around the heat release equipment. Nevertheless, the predicted temperature distribution represented a qualitative tendency, low at the bottom of the CV and increases with a rise in height within the CV. The total volume-averaged temperature was nearly equal to the average gas phase temperature. To improve the predictive performance, parameter studies regarding heat from the equipment and the reconsideration of the numerical model that can be applicable to large temperature gradient around the equipment are needed.


2020 ◽  
Vol 117 (26) ◽  
pp. 14764-14768 ◽  
Author(s):  
Wanying Kang ◽  
Glenn Flierl

The ice shell on Enceladus, an icy moon of Saturn, exhibits strong asymmetry between the northern and southern hemispheres, with all known geysers concentrated over the south pole, even though the expected pattern of tidal forced deformation should be symmetric between the north and south poles. Using an idealized ice-evolution model, we demonstrate that this asymmetry may form spontaneously, without any noticeable a priori asymmetry (such as a giant impact or a monopole structure of geological activity), in contrast to previous studies. Infinitesimal asymmetry in the ice shell thickness due to random perturbations are found to be able to grow indefinitely, ending up significantly thinning the ice shell at one of the poles, thereby allowing fracture formation there. Necessary conditions to trigger this hemispheric symmetry-breaking mechanism are found analytically. A rule of thumb we find is that, for Galilean and Saturnian icy moons, the ice shell can undergo hemispheric symmetry breaking only if the mean shell thickness is around 10 to 30 km.


2020 ◽  
Author(s):  
Isamu Matsuyama ◽  
Antony Trinh

<p><span>We assess the gravity constraints on the interior structure of Europa in anticipation of the Europa Clipper mission.</span></p><p><span>Moore and Schubert (2000) illustrated that the diurnal tide amplitude, quantified by the diurnal (tidal) Love numbers, k<sub>2</sub><sup>d</sup> and h<sub>2</sub><sup>d</sup>, can be used to determine the presence of a subsurface liquid ocean due to the significant increase in tidal amplitudes associated with the mechanical decoupling of the shell with a subsurface ocean.<span>  </span>However, they considered a limited range of possible interior parameters except the ice shell rigidity, which was assumed to be in the range of 1-10 GPa. We consider a wider range of possible interior structure parameters and a more realistic ice shell rigidity range of 1-4 GPa. Inferring the presence of a subsurface ocean is slightly easier than previously thought (Verma & Margot 2018), with required absolute precisions of 0.08 for k<sub>2</sub><sup>d</sup> , and 0.44 for h<sub>2</sub><sup>d</sup> .</span></p><p><span>Previous work have considered diurnal (tidal) gravity constraints alone or static gravity constraints alone using a forward modeling approach (e.g.<span>  </span>Anderson et al., 1998; Moore and Schubert, 2000; Wahr et al., 2006). We evaluate constraints on interior structure parameters using Bayesian inversion with the mass, static gravity, and diurnal gravity as constraints, allowing a probabilistic view of Europa's interior structure. Given the same relative uncertainties, the static Love numbers provide stronger constraints on the interior structure relative to those from the mean moment of inertia (MOI). Additionally, the static Love numbers can be inferred directly from the static gravity field whereas inferring the MOI requires the Radau-Darwin approximation.</span></p><p><span>Jointly considered with the static shape, the static gravity field can constrain the average and long-wavelength thickness of the shell. For an isostatically compensated shell, it is usual to conceptualize the crust as a series of independently floating columns of equal cross-sectional area which, by application of Archimedes' principle, should have equal mass above the depth of compensation. However, this approach is unphysical in the presence of curvature and self-gravitation. We consider alternative prescriptions of Airy isostasy: the equal-pressure prescription (Hemingway and Matsuyama, 2017), and the minimum-stress prescription (Dahlen 1982; Beuthe et al., 2016; Trinh et al., 2019).<span>  </span>The gravitational coefficients are more sensitive to shell thickness than would be expected from the classical (equal-mass) approach, illustrating that the equal-mass prescription can lead to large errors in the inferred average shell thickness and its lateral variations.</span></p><p><span>Diurnal gravity data alone can only constrain the product of the shell rigidity and thickness (Moore and Schubert, 2000; Wahr et al., 2006). An additional observational constraint that is sensitive to these parameters is the libration amplitude, which can be obtained from direct imaging or from altimeter data. We show that a joint gravity and libration analysis is able to separately constrain the shell thickness and rigidity.</span></p>


Author(s):  
Takafumi Nishino ◽  
Hiroshi Iwai ◽  
Kenjiro Suzuki

Strategies to reduce the temperature gradient of the cell have been numerically examined by using a comprehensive analytical model of an indirect internal reforming tubular SOFC, the first generation of which was presented at the last conference in 2003 (1st ICFCSET). In particular, how the air flow rate, gas inlet temperature and density distribution of reforming catalyst affect the thermal field in the cell has been examined. Based on the calculated results, it has been confirmed that larger air flow rate reduces the maximum temperature and accordingly the temperature gradient of the cell, while lower inlet temperatures of gases reduce only the average temperature of the cell. For the reforming catalyst distribution, it has been determined that the temperature gradient of the cell can be fairly reduced by adjusting the amount and allocation of the catalyst. In addition, it has been revealed that the distribution pattern of the catalyst has little effect on the average temperature, so that the power generation performance of the cell is not affected by the adjustment of the catalyst distribution pattern substantially.


Sign in / Sign up

Export Citation Format

Share Document