scholarly journals Bearing Capacity of Floating Ice Sheets

1977 ◽  
Vol 19 (81) ◽  
pp. 658-659
Author(s):  
M. D. Coon

AbstractFloating ice sheets are loaded thermally as well as mechanically by winds, water currents, and at times by man-made structures. When floating ice sheets are to be used in engineering problems, all of the applied loads must be accounted for. Determining the forces that will cause an ice sheet to fail is difficult not only because of the various kinds of loads, but also because the properties of ice sheets (fresh and sea) are dependent upon many variables, and the properties vary through the thickness of the ice sheet.

1993 ◽  
Vol 39 (131) ◽  
pp. 10-14 ◽  
Author(s):  
J. F. Nye

AbstractThe pattern of horizontal strain rate in an ice sheet is discussed from a topological point of view. In a circularly symmetric ice sheet, the isotropic point for strain rate at its centre is degenerate and structurally unstable. On perturbation the degenerate point splits into two elementary isotropic points, each of which has the lemon pattern for the trajectories of principal strain rate. Contour maps of principal strain-rate values are presented which show the details of the splitting.


1986 ◽  
Vol 8 ◽  
pp. 141-145 ◽  
Author(s):  
K.C. Partington ◽  
C.G. Rapley

Satellite-borne, radar altimeters have already demonstrated an ability to produce high-precision, topographic maps of the ice sheets. Seasat operated in a tracking mode, designed for use over oceans, but successfully tracked much of the flatter regions of the ice sheet to ± 72° latitude. ERS-1 will extend coverage to ± 82° latitude and will be equipped with an ocean mode similar to that of Seasat and an ice mode designed to permit tracking of the steeper, peripheral regions. The ocean mode will be used over the flatter regions, because of its greater precision.Altimeter performance over the ice sheets has been investigated through a study of Seasat tracking behaviour and the use of an altimeter performance simulator, with a view to assessing the likely performance of ERS-1 and the design of improved tracking systems. Analysis of Seasat data shows that lock was frequently lost, as a result of possessing a non-linear height error signal over the width of the range window. Having lost lock, the tracker frequently failed to transfer rapidly and effectively to track mode. Use of the altimeter performance simulator confirms many of the findings from Seasat data and it is being used to facilitate data interpretation and mapping, through the modelling of waveform sequence.


2021 ◽  
Vol 13 (12) ◽  
pp. 2425
Author(s):  
Yiheng Cai ◽  
Dan Liu ◽  
Jin Xie ◽  
Jingxian Yang ◽  
Xiangbin Cui ◽  
...  

Analyzing the surface and bedrock locations in radar imagery enables the computation of ice sheet thickness, which is important for the study of ice sheets, their volume and how they may contribute to global climate change. However, the traditional handcrafted methods cannot quickly provide quantitative, objective and reliable extraction of information from radargrams. Most traditional handcrafted methods, designed to detect ice-surface and ice-bed layers from ice sheet radargrams, require complex human involvement and are difficult to apply to large datasets, while deep learning methods can obtain better results in a generalized way. In this study, an end-to-end multi-scale attention network (MsANet) is proposed to realize the estimation and reconstruction of layers in sequences of ice sheet radar tomographic images. First, we use an improved 3D convolutional network, C3D-M, whose first full connection layer is replaced by a convolution unit to better maintain the spatial relativity of ice layer features, as the backbone. Then, an adjustable multi-scale module uses different scale filters to learn scale information to enhance the feature extraction capabilities of the network. Finally, an attention module extended to 3D space removes a redundant bottleneck unit to better fuse and refine ice layer features. Radar sequential images collected by the Center of Remote Sensing of Ice Sheets in 2014 are used as training and testing data. Compared with state-of-the-art deep learning methods, the MsANet shows a 10% reduction (2.14 pixels) on the measurement of average mean absolute column-wise error for detecting the ice-surface and ice-bottom layers, runs faster and uses approximately 12 million fewer parameters.


1996 ◽  
Vol 42 (140) ◽  
pp. 10-22 ◽  
Author(s):  
Ian Joughin ◽  
Dale Winebrenner ◽  
Mark Fahnestock ◽  
Ron Kwok ◽  
William Krabill

AbstractDetailed digital elevation models (DEMs) do not exist for much of the Greenland and Antartic ice sheets. Radar altimetry is at present the primary, in many cases the only, source of topographic data over the ice sheets, but the horizontal resolution of such data is coarse. Satellite-radar interferometry uses the phase difference between pairs of synthetic aperture radar (SAR) images to measure both ice-sheet topography and surface displacement. We have applied this technique using ERS-1 SAR data to make detailed (i.e. 80 m horizontal resolution) maps of surface topography in a 100 km by 300 km strip in West Greenland, extending northward from just above Jakobshavns Isbræ. Comparison with а 76 km long line of airborne laser-altimeter data shows that We have achieved a relative accuracy of 2.5 m along the profile. These observations provide a detailed view of dynamically Supported topography near the margin of an ice sheet. In the final section We compare our estimate of topography with phase contours due to motion, and confirm our earlier analysis concerning vertical ice-sheet motion and complexity in ERS-1 SAR interferograms.


2001 ◽  
Vol 47 (157) ◽  
pp. 271-282 ◽  
Author(s):  
Richard C.A. Hindmarsh ◽  
E. Le Meur

AbstractMarine ice sheets with mechanics described by the shallow-ice approximation by definition do not couple mechanically with the shelf. Such ice sheets are known to have neutral equilibria. We consider the implications of this for their dynamics and in particular for mechanisms which promote marine ice-sheet retreat. The removal of ice-shelf buttressing leading to enhanced flow in grounded ice is discounted as a significant influence on mechanical grounds. Sea-level rise leading to reduced effective pressures under ice streams is shown to be a feasible mechanism for producing postglacial West Antarctic ice-sheet retreat but is inconsistent with borehole evidence. Warming thins the ice sheet by reducing the average viscosity but does not lead to grounding-line retreat. Internal oscillations either specified or generated via a MacAyeal–Payne thermal mechanism promote migration. This is a noise-induced drift phenomenon stemming from the neutral equilibrium property of marine ice sheets. This migration occurs at quite slow rates, but these are sufficiently large to have possibly played a role in the dynamics of the West Antarctic ice sheet after the glacial maximum. Numerical experiments suggest that it is generally true that while significant changes in thickness can be caused by spatially uniform changes, spatial variability coupled with dynamical variability is needed to cause margin movement.


2009 ◽  
Vol 5 (3) ◽  
pp. 329-345 ◽  
Author(s):  
S. Bonelli ◽  
S. Charbit ◽  
M. Kageyama ◽  
M.-N. Woillez ◽  
G. Ramstein ◽  
...  

Abstract. A 2.5-dimensional climate model of intermediate complexity, CLIMBER-2, fully coupled with the GREMLINS 3-D thermo-mechanical ice sheet model is used to simulate the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle and to investigate the ice sheets responses to both insolation and atmospheric CO2 concentration. This model reproduces the main phases of advance and retreat of Northern Hemisphere ice sheets during the last glacial cycle, although the amplitude of these variations is less pronounced than those based on sea level reconstructions. At the last glacial maximum, the simulated ice volume is 52.5×1015 m3 and the spatial distribution of both the American and Eurasian ice complexes is in reasonable agreement with observations, with the exception of the marine parts of these former ice sheets. A set of sensitivity studies has also been performed to assess the sensitivity of the Northern Hemisphere ice sheets to both insolation and atmospheric CO2. Our results suggest that the decrease of summer insolation is the main factor responsible for the early build up of the North American ice sheet around 120 kyr BP, in agreement with benthic foraminifera δ18O signals. In contrast, low insolation and low atmospheric CO2 concentration are both necessary to trigger a long-lasting glaciation over Eurasia.


1961 ◽  
Vol 87 (2) ◽  
pp. 83-88
Author(s):  
L.W. Gold ◽  
R.H. Wood ◽  
N.C. Lind ◽  
D.T. Wright
Keyword(s):  

2021 ◽  
Author(s):  
Winnie Chu

<p>Airborne radar sounding observations have been instrumental in understanding subglacial environments and basal processes of ice sheets. Since the advent of analog radar-echo sounding (RES) system in the early 1970s, there have been tremendous innovations in both RES hardware and signal processing techniques. These technological advancements have provided high-resolution ice thickness measurements, improved detection and characterization of subglacial hydrology, as well as improved understanding of basal thermal conditions, bed roughness and geomorphology, and other processes that govern the basal boundary of the polar ice sheets. In this talk, I will provide an overview of the recent developments in radar processing approaches and system designs and highlight some of the new understanding of ice sheet subglacial processes that emerge from these breakthroughs. I will end by discussing areas where future radar applications and discoveries may be possible, including the utilization of machine learning algorithms, space-borne radar missions, and ground-based passive radar platforms to provide long-term monitoring of ice sheet subglacial environments.</p>


2021 ◽  
Author(s):  
Olivier Gagliardini ◽  
Fabien Gillet-Chaulet ◽  
Florent Gimbert

<p>Friction at the base of ice-sheets has been shown to be one of the largest uncertainty of model projections for the contribution of ice-sheet to future sea level rise. On hard beds, most of the apparent friction is the result of ice flowing over the bumps that have a size smaller than described by the grid resolution of ice-sheet models. To account for this friction, the classical approach is to replace this under resolved roughness by an ad-hoc friction law. In an imaginary world of unlimited computing resource and highly resolved bedrock DEM, one should solve for all bed roughnesses assuming pure sliding at the bedrock-ice interface. If such solutions are not affordable at the scale of an ice-sheet or even at the scale of a glacier, the effect of small bumps can be inferred using synthetical periodic geometry. In this presentation,<span>  </span>beds are constructed using the superposition of up to five bed geometries made of sinusoidal bumps of decreasing wavelength and amplitudes. The contribution to the total friction of all five beds is evaluated by inverse methods using the most resolved solution as observation. It is shown that small features of few meters can contribute up to almost half of the total friction, depending on the wavelengths and amplitudes distribution. This work also confirms that the basal friction inferred using inverse method<span>  </span>is very sensitive to how the bed topography is described by the model grid, and therefore depends on the size of the model grid itself.<span> </span></p>


2014 ◽  
Vol 10 (5) ◽  
pp. 1817-1836 ◽  
Author(s):  
F. A. Ziemen ◽  
C. B. Rodehacke ◽  
U. Mikolajewicz

Abstract. In the standard Paleoclimate Modelling Intercomparison Project (PMIP) experiments, the Last Glacial Maximum (LGM) is modeled in quasi-equilibrium with atmosphere–ocean–vegetation general circulation models (AOVGCMs) with prescribed ice sheets. This can lead to inconsistencies between the modeled climate and ice sheets. One way to avoid this problem would be to model the ice sheets explicitly. Here, we present the first results from coupled ice sheet–climate simulations for the pre-industrial times and the LGM. Our setup consists of the AOVGCM ECHAM5/MPIOM/LPJ bidirectionally coupled with the Parallel Ice Sheet Model (PISM) covering the Northern Hemisphere. The results of the pre-industrial and LGM simulations agree reasonably well with reconstructions and observations. This shows that the model system adequately represents large, non-linear climate perturbations. A large part of the drainage of the ice sheets occurs in ice streams. Most modeled ice stream systems show recurring surges as internal oscillations. The Hudson Strait Ice Stream surges with an ice volume equivalent to about 5 m sea level and a recurrence interval of about 7000 yr. This is in agreement with basic expectations for Heinrich events. Under LGM boundary conditions, different ice sheet configurations imply different locations of deep water formation.


Sign in / Sign up

Export Citation Format

Share Document