scholarly journals COMPARISON OF PLANNING RESULTS USING BUBBLE SCHEDULING AND ALLOCATION (BSA) ALGORITHM FOR DIFFERENT TOPOLOGIES

2021 ◽  
Vol 295 (2) ◽  
pp. 89-96
Author(s):  
P. REHIDA ◽  
◽  
I. KOMISAROV ◽  

In this article, the bubble scheduling and allocation algorithm is considered for different types of topologies: grid, hypercube, de Bruijn topology, extended de Bruijn topology based on ternary code. Static planning algorithms are analyzed; the results are presented in the form of a comparative table on the criteria of complexity, the need to find a critical path, the presence of a table of routing and efficiency. The study of the method of planning calculations is carried out based on the problem of finding the roots of systems of linear and nonlinear equations using Cramer’s and Newton’s methods. The corresponding graphs of tier-parallel form are synthesized for these methods. The principles of synthesis for 4 types of topologies are shown. The synthesis of the grid, hypercube, and de Bruijn graph is considered in the classical form. The synthesis of the extended de Bruijn topology is a synthesis of de Bruijn topology [1, 2] using a ternary code. That is, with the same number of processors, the number of connections increases. Experimental studies of the scheduling of the obtained graphs in the synthesized topologies using the method of bubble scheduling and allocation are conducted; the results of scheduling are presented for these topologies. The best results were shown by extended de Bruijn topology based on ternary code due to the increased degree of units, which is especially noticeable for Newton’s method where there are much more data transfers than in Cramer’s method. The topology of a hypercube and de Bruijn topology demonstrated just about same results but hypercube topology did a little better. In addition to this, having a smaller diameter and cost, the hypercube is the most optimal topology and still used today. However, when constructing fail-safe topological organizations, it is better to use topologies based on ternary code, such as the topology based on the extended de Bruijn graph.

Author(s):  
Б.И. Гельцер ◽  
Э.В. Слабенко ◽  
Ю.В. Заяц ◽  
В.Н. Котельников

Одним из основных требований к разработке экспериментальных моделей цереброваскулярных заболеваний является их максимальная приближенность к реальной клинической практике. В работе систематизированы данные по основным методам моделирования острой ишемии головного мозга (ОИГМ), представлена их классификация, анализируются данные о преимуществах и недостатках той или иной модели. Обсуждаются результаты экспериментальных исследований по изучению патогенеза ОИГМ с использованием различных моделей (полной и неполной глобальной, локальной и мультифокальной ишемии) и способов их реализации (перевязка артерий, клипирование, коагуляция, эмболизация и др.). Особое внимание уделяется «стабильности» последствий острого нарушения мозгового кровообращения: необратимых ишемических повреждений головного мозга или обратимых с реперфузией заданной продолжительности. Отмечается, что важное значение в этих исследованиях должно принадлежать современным методам прижизненной визуализации очагов острого ишемического повреждения, что позволяет оценивать динамику патологического процесса. Предлагаемый метод отвечает требованиям гуманного обращения с животными. Подчеркивается, что выбор релевантной модели ОИГМ определяется задачами предстоящего исследования и технологическими ресурсами научной лаборатории. Development of experimental models for acute forms of cerebrovascular diseases is essential for implementation of methods for their prevention and treatment. One of the principal requirements to such models is their maximum approximation to actual clinical practice. This review systematized major models of acute cerebral ischemia (ACI), their classification, and presented information about their advantages and shortcomings. Also, the review presented results of experimental studies on pathophysiological mechanisms of different types of modeled ACI (complete and incomplete global, local, and multifocal ischemia) and methods for creating these models (arterial ligation, clipping, coagulation, embolization, etc.). Particular attention was paid to “stability” of the consequences of acutely impaired cerebral circulation - an irreversible ischemic brain injury or a reversible injury with reperfusion of a given duration. The authors emphasized that in such studies, a special significance should be given to intravital imaging of acute ischemic damage foci using modern methods, which allow assessing the dynamics of the pathological process and meet the requirements to humane treatment of animals. The choice of a relevant ACI model is determined by objectives of the planned study and the technological resources available at the research laboratory.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2506
Author(s):  
Wamidh H. Talib ◽  
Ahmad Riyad Alsayed ◽  
Alaa Abuawad ◽  
Safa Daoud ◽  
Asma Ismail Mahmod

Melatonin is a pleotropic molecule with numerous biological activities. Epidemiological and experimental studies have documented that melatonin could inhibit different types of cancer in vitro and in vivo. Results showed the involvement of melatonin in different anticancer mechanisms including apoptosis induction, cell proliferation inhibition, reduction in tumor growth and metastases, reduction in the side effects associated with chemotherapy and radiotherapy, decreasing drug resistance in cancer therapy, and augmentation of the therapeutic effects of conventional anticancer therapies. Clinical trials revealed that melatonin is an effective adjuvant drug to all conventional therapies. This review summarized melatonin biosynthesis, availability from natural sources, metabolism, bioavailability, anticancer mechanisms of melatonin, its use in clinical trials, and pharmaceutical formulation. Studies discussed in this review will provide a solid foundation for researchers and physicians to design and develop new therapies to treat and prevent cancer using melatonin.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Kingshuk Mukherjee ◽  
Massimiliano Rossi ◽  
Leena Salmela ◽  
Christina Boucher

AbstractGenome wide optical maps are high resolution restriction maps that give a unique numeric representation to a genome. They are produced by assembling hundreds of thousands of single molecule optical maps, which are called Rmaps. Unfortunately, there are very few choices for assembling Rmap data. There exists only one publicly-available non-proprietary method for assembly and one proprietary software that is available via an executable. Furthermore, the publicly-available method, by Valouev et al. (Proc Natl Acad Sci USA 103(43):15770–15775, 2006), follows the overlap-layout-consensus (OLC) paradigm, and therefore, is unable to scale for relatively large genomes. The algorithm behind the proprietary method, Bionano Genomics’ Solve, is largely unknown. In this paper, we extend the definition of bi-labels in the paired de Bruijn graph to the context of optical mapping data, and present the first de Bruijn graph based method for Rmap assembly. We implement our approach, which we refer to as rmapper, and compare its performance against the assembler of Valouev et al. (Proc Natl Acad Sci USA 103(43):15770–15775, 2006) and Solve by Bionano Genomics on data from three genomes: E. coli, human, and climbing perch fish (Anabas Testudineus). Our method was able to successfully run on all three genomes. The method of Valouev et al. (Proc Natl Acad Sci USA 103(43):15770–15775, 2006) only successfully ran on E. coli. Moreover, on the human genome rmapper was at least 130 times faster than Bionano Solve, used five times less memory and produced the highest genome fraction with zero mis-assemblies. Our software, rmapper is written in C++ and is publicly available under GNU General Public License at https://github.com/kingufl/Rmapper.


2009 ◽  
Vol 296 (3) ◽  
pp. H594-H615 ◽  
Author(s):  
Victor A. Maltsev ◽  
Edward G. Lakatta

Recent experimental studies have demonstrated that sinoatrial node cells (SANC) generate spontaneous, rhythmic, local subsarcolemmal Ca2+ releases (Ca2+ clock), which occur during late diastolic depolarization (DD) and interact with the classic sarcolemmal voltage oscillator (membrane clock) by activating Na+-Ca2+ exchanger current ( INCX). This and other interactions between clocks, however, are not captured by existing essentially membrane-delimited cardiac pacemaker cell numerical models. Using wide-scale parametric analysis of classic formulations of membrane clock and Ca2+ cycling, we have constructed and initially explored a prototype rabbit SANC model featuring both clocks. Our coupled oscillator system exhibits greater robustness and flexibility than membrane clock operating alone. Rhythmic spontaneous Ca2+ releases of sarcoplasmic reticulum (SR)-based Ca2+ clock ignite rhythmic action potentials via late DD INCX over much broader ranges of membrane clock parameters [e.g., L-type Ca2+ current ( ICaL) and/or hyperpolarization-activated (“funny”) current ( If) conductances]. The system Ca2+ clock includes SR and sarcolemmal Ca2+ fluxes, which optimize cell Ca2+ balance to increase amplitudes of both SR Ca2+ release and late DD INCX as SR Ca2+ pumping rate increases, resulting in a broad pacemaker rate modulation (1.8–4.6 Hz). In contrast, the rate modulation range via membrane clock parameters is substantially smaller when Ca2+ clock is unchanged or lacking. When Ca2+ clock is disabled, the system parametric space for fail-safe SANC operation considerably shrinks: without rhythmic late DD INCX ignition signals membrane clock substantially slows, becomes dysrhythmic, or halts. In conclusion, the Ca2+ clock is a new critical dimension in SANC function. A synergism of the coupled function of Ca2+ and membrane clocks confers fail-safe SANC operation at greatly varying rates.


2018 ◽  
Vol 7 (3.2) ◽  
pp. 376
Author(s):  
Oleksandr Semko ◽  
Olga Gukasian ◽  
Serhii Skliarenko

The paper sums up a series of experimental studies describing the influence of most types of concreting common defects, such as core weakening: weak compression inclusions, voids, height heterogeneity of concrete. The basis of the experimental study is the research on the concrete core production conditions influence on tube confined concrete elements and the change in physical and mechanical characteristics of the elements. The concrete strength is estimated based on the results of the study of specially shaped samples with given dimensions. According to the results of concreting samples with different types of modeled defects (abnormalities) inspection, the most dangerous damages of the concrete core were identified and different variants of the height strength retrogression of the elements under study were analyzed. As a result, the degree and type of damage to the tube confined concrete elements core of the samples, which affect the fracture pattern, was established. 


2012 ◽  
Vol 38 (3) ◽  
pp. 801-810 ◽  
Author(s):  
Yiou Chen ◽  
Jianhao Hu ◽  
Xiang Ling ◽  
Tingting Huang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document