scholarly journals Spectral sensitivity of the visual system of endemic Baikal amphipods

Author(s):  
P. Drozdova ◽  
◽  
◽  
A. Saranchina ◽  
M. Timofeyev ◽  
...  
2004 ◽  
Vol 21 (2) ◽  
pp. 97-106 ◽  
Author(s):  
ANGELA L. McDOWELL ◽  
LEE J. DIXON ◽  
JENNIFER D. HOUCHINS ◽  
JOSEPH BILOTTA

Although the zebrafish has become an important model in visual neuroscience, little has been done to examine the processing of its higher visual centers. The purpose of this work was twofold. The first purpose was to examine the physiology of the zebrafish retinotectal system and its relationship to retinal physiology. Spectral sensitivity functions were derived from visually evoked tectal responses and these functions were compared to the functions of electroretinogram (ERG) responses obtained using the same stimulus conditions. The second purpose was to examine the recovery of visual functioning of the tectum following optic nerve damage. The optic nerves of adult zebrafish were damaged (crushed), and tectal visual processing was assessed following damage. The results showed that the spectral sensitivity functions based on the On-responses of the tectum and ERG were qualitatively similar. The functions based on each response type received similar cone contributions including both nonopponent and opponent contributions. However, the spectral sensitivity functions based on the Off-responses of the tectum and ERG differed. The results also showed that the zebrafish visual system is capable of neural regeneration. By 90 days following an optic nerve crush, the spectral sensitivity function based on the tectal On-response was similar to functions obtained from normal zebrafish. Although the tectal Off-response did recover, the spectral sensitivity based on the Off-response was not the same as the function of normal zebrafish. These results support the notion that different levels of the visual system process information differently and that the zebrafish visual system, like those of other lower vertebrates, is capable of functional regeneration.


1999 ◽  
Vol 16 (5) ◽  
pp. 881-888 ◽  
Author(s):  
SHANNON SASZIK ◽  
JOSEPH BILOTTA ◽  
CARLA M. GIVIN

Research has shown that adult zebrafish have a complex visual system, with two possible opponent mechanisms. Anatomically, zebrafish retina develops in a sequential manner and is immature at hatching. The purpose of the present study was to assess zebrafish retinal development using the electroretinogram (ERG). ERG responses to visual stimuli were obtained from 4–5, 6–8, 13–15, and 21–24 days postfertilization (dpf) zebrafish. Individual waveforms were assessed and compared across the four age groups. Spectral-sensitivity functions were calculated for the a- and b-wave components of the ERG response. Results showed that the ERG waveforms and spectral-sensitivity functions varied with age. While the 21–24 dpf subjects had an ERG waveform that was similar to that of adults, the younger subjects did not. Although there were modest differences in the a-wave spectral sensitivity, substantial differences were found in the b-wave spectral sensitivities across the ages. There was a consistent strong response to ultraviolet wavelengths, while across the remaining parts of the spectrum, there was a gradual increase in sensitivity with age. Also, the 21–24 dpf subjects appear to have adult-like U- and S-cone functions, but were missing the L-M and the M-S opponent mechanisms found in the adult. These results support the findings of the anatomical studies and demonstrate that the zebrafish is a useful model for examining the development of retinal function.


2020 ◽  
Author(s):  
Marjorie A. Liénard ◽  
Gary D. Bernard ◽  
Andrew A. Allen ◽  
Jean-Marc Lassance ◽  
Siliang Song ◽  
...  

AbstractColour vision is largely mediated by changes in number, expression, and spectral properties of rhodopsins, but the genetic mechanisms underlying adaptive shifts in spectral sensitivity remain largely unexplored. Using in vivo photochemistry, optophysiology, and in vitro functional assays, we link variation in eye spectral sensitivity at long wavelengths to species-specific absorbance spectra for LW opsins in lycaenid butterflies. In addition to loci specifying an ancestral green-absorbing rhodopsin with maximum spectral sensitivity (λmax) at 520-530 nm in Callophrys sheridanii and Celastrina ladon, we find a novel form of red-shifted LW rhodopsin at λmax = 565-570 nm in Arhopala japonica and Eumaeus atala. Furthermore, we show that Ca. sheridanii and Ce. ladon exhibit a smaller bathochromic shift at BRh2 (480-489 nm), and with the ancestral LW rhodopsin, cannot perceive visible red light beyond 600 nm. In contrast, molecular variation at the LW opsin in A. japonica and E. atala is coordinated with tuning of the blue opsin that also shifts sensitivity to longer wavelengths enabling colour discrimination up to 617 nm. We then use E. atala as a model to examine the interplay between red and blue spectral sensitivity. Owing to blue duplicate expression, the spatial distribution of opsin mRNAs within an ommatidium defines an expanded retinal stochastic mosaic of at least six opsin-based photoreceptor classes. Our mutagenesis in vitro assays with BRh1 (λmax = 435 nm) chimeric blue rhodopsins reveal four main residues contributing to the 65 nm bathochromic shift towards BRh2 (λmax = 500 nm). Adaptations in this four-opsin visual system are relevant for discrimination of conspecific reflectance spectra in E. atala. Together, these findings illustrate how functional changes at multiple rhodopsins contribute to the evolution of a broader spectral sensitivity and adaptation in visual performance.Significance StatementRhodopsins are photosensitive protein molecules that absorb specific wavelengths of incoming light and convey colour information in the visual system. We show that molecular evolution in a green insect opsin gene resulted in a shift in its maximal absorbance peak, enabling some lycaenid butterflies to use spectral energy of longer wavelengths (LW) to discriminate colours in the red spectrum better than relatives bearing ancestral green LW rhodopsins. Lycaenids also evolved a duplicate blue opsin gene, and we illustrate an example where species equipped with red LW rhodopsins shifted their blue sensitivity peak to longer wavelengths due to changes in several blue-tuning residues that have evolved repeatedly in different insect lineages. We demonstrate how changes at multiple vision genes in the insect eye effectively create a coordinated mechanism expanding spectral sensitivity for visually guided behaviours such as selecting host plants and mates.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3595 ◽  
Author(s):  
Nicolas Lessios

Understanding how individual photoreceptor cells factor in the spectral sensitivity of a visual system is essential to explain how they contribute to the visual ecology of the animal in question. Existing methods that model the absorption of visual pigments use templates which correspond closely to data from thin cross-sections of photoreceptor cells. However, few modeling approaches use a single framework to incorporate physical parameters of real photoreceptors, which can be fused, and can form vertical tiers. Akaike’s information criterion (AICc) was used here to select absorptance models of multiple classes of photoreceptor cells that maximize information, given visual system spectral sensitivity data obtained using extracellular electroretinograms and structural parameters obtained by histological methods. This framework was first used to select among alternative hypotheses of photoreceptor number. It identified spectral classes from a range of dark-adapted visual systems which have between one and four spectral photoreceptor classes. These were the velvet worm,Principapillatus hitoyensis, the branchiopod water flea,Daphnia magna, normal humans, and humans with enhanced S-cone syndrome, a condition in which S-cone frequency is increased due to mutations in a transcription factor that controls photoreceptor expression. Data from the Asian swallowtail,Papilio xuthus, which has at least five main spectral photoreceptor classes in its compound eyes, were included to illustrate potential effects of model over-simplification on multi-model inference. The multi-model framework was then used with parameters of spectral photoreceptor classes and the structural photoreceptor array kept constant. The goal was to map relative opsin expression to visual pigment concentration. It identified relative opsin expression differences for two populations of the bluefin killifish,Lucania goodei. The modeling approach presented here will be useful in selecting the most likely alternative hypotheses of opsin-based spectral photoreceptor classes, using relative opsin expression and extracellular electroretinography.


1982 ◽  
Vol 60 (11) ◽  
pp. 2968-2970 ◽  
Author(s):  
Craig W. Hawryshyn

Eliminating brightness as a discriminatory cue is unquestionably the most important factor in animal color vision studies. Accurate descriptions of any species' color vision depends on, first, a determination of spectral sensitivity (electrophysiologically or psychophysically) which can then be used to establish a brightness match between the comparison stimuli and, second, tests of wavelength discrimination. The use of innate responses to investigate animal color vision introduces variables which are not characteristically visual. Since these innate behaviors involve neural mechanisms other than the visual system, they tend to distort the normal characteristics of the species' color vision.


2010 ◽  
Vol 83 (2) ◽  
pp. 299-307 ◽  
Author(s):  
D. Michelle McComb ◽  
Tamara M. Frank ◽  
Robert E. Hueter ◽  
Stephen M. Kajiura

Sign in / Sign up

Export Citation Format

Share Document