Semiconducting-Ionic Conductor As A New Generation Electrolyte Membrane For Low-Temperature Solid Oxide Fuel Cells

2018 ◽  
Author(s):  
Chen Xia
2019 ◽  
Vol 44 (26) ◽  
pp. 13843-13851 ◽  
Author(s):  
Zuying Feng ◽  
Liang Liu ◽  
Lingyao Li ◽  
Jiahe Chen ◽  
Yuhong Liu ◽  
...  

2021 ◽  
Vol 499 ◽  
pp. 229963
Author(s):  
Wenjing Dong ◽  
Ziwei Xiao ◽  
Mengling Hu ◽  
Ruineng Ruan ◽  
Shuo Li ◽  
...  

Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2290
Author(s):  
Yuzheng Lu ◽  
Youquan Mi ◽  
Junjiao Li ◽  
Fenghua Qi ◽  
Senlin Yan ◽  
...  

Reducing the operating temperature of Solid Oxide Fuel Cells (SOFCs) to 300–600 °C is a great challenge for the development of SOFC. Among the extensive research and development (R&D) efforts that have been done on lowering the operating temperature of SOFCs, nanomaterials have played a critical role in improving ion transportation in electrolytes and facilitating electrochemical catalyzation of the electrodes. This work reviews recent progress in lowering the temperature of SOFCs by using semiconductor-ionic conductor nanomaterial, which is typically a composition of semiconductor and ionic conductor, as a membrane. The historical development, as well as the working mechanism of semiconductor-ionic membrane fuel cell (SIMFC), is discussed. Besides, the development in the application of nanostructured pure ionic conductors, semiconductors, and nanocomposites of semiconductors and ionic conductors as the membrane is highlighted. The method of using nano-structured semiconductor-ionic conductors as a membrane has been proved to successfully exhibit a significant enhancement in the ionic conductivity and power density of SOFCs at low temperatures and provides a new way to develop low-temperature SOFCs.


2019 ◽  
Vol 2 (2) ◽  
pp. 1210-1220 ◽  
Author(s):  
Sun Jae Kim ◽  
Taner Akbay ◽  
Junko Matsuda ◽  
Atsushi Takagaki ◽  
Tatsumi Ishihara

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yixiao Cai ◽  
Yang Chen ◽  
Muhammad Akbar ◽  
Bin Jin ◽  
Zhengwen Tu ◽  
...  

AbstractSince colossal ionic conductivity was detected in the planar heterostructures consisting of fluorite and perovskite, heterostructures have drawn great research interest as potential electrolytes for solid oxide fuel cells (SOFCs). However, so far, the practical uses of such promising material have failed to materialize in SOFCs due to the short circuit risk caused by SrTiO3. In this study, a series of fluorite/perovskite heterostructures made of Sm-doped CeO2 and SrTiO3 (SDC–STO) are developed in a new bulk-heterostructure form and evaluated as electrolytes. The prepared cells exhibit a peak power density of 892 mW cm−2 along with open circuit voltage of 1.1 V at 550 °C for the optimal composition of 4SDC–6STO. Further electrical studies reveal a high ionic conductivity of 0.05–0.14 S cm−1 at 450–550 °C, which shows remarkable enhancement compared to that of simplex SDC. Via AC impedance analysis, it has been shown that the small grain-boundary and electrode polarization resistances play the major roles in resulting in the superior performance. Furthermore, a Schottky junction effect is proposed by considering the work functions and electronic affinities to interpret the avoidance of short circuit in the SDC–STO cell. Our findings thus indicate a new insight to design electrolytes for low-temperature SOFCs.


Ionics ◽  
2020 ◽  
Vol 26 (12) ◽  
pp. 6225-6232
Author(s):  
Shoucheng He ◽  
Hailu Dai ◽  
Xiaowei Chen ◽  
Qingle Shi ◽  
Zetian Tao

Sign in / Sign up

Export Citation Format

Share Document