scholarly journals New application of mesh-free particle method to geotechnical engineering

2016 ◽  
Vol 2 (27) ◽  
pp. 1008-1011
Author(s):  
Hideto Nonoyama ◽  
Masaki Nakano
2011 ◽  
Vol 49 (5) ◽  
pp. 649-656 ◽  
Author(s):  
Aidin Jabbari Sahebari ◽  
Yee-Chung Jin ◽  
Ahmad Shakibaeinia

2007 ◽  
Vol 43 (4) ◽  
pp. 1333-1336 ◽  
Author(s):  
Guido Ala ◽  
Elisa Francomano ◽  
Adele Tortorici ◽  
Elena Toscano ◽  
Fabio Viola

Author(s):  
Parveena Shamim Abdul Salam ◽  
Wolfgang Bock ◽  
Axel Klar ◽  
Sudarshan Tiwari

Modeling and simulation of disease spreading in pedestrian crowds have recently become a topic of increasing relevance. In this paper, we consider the influence of the crowd motion in a complex dynamical environment on the course of infection of the pedestrians. To model the pedestrian dynamics, we consider a kinetic equation for multi-group pedestrian flow based on a social force model coupled with an Eikonal equation. This model is coupled with a non-local SEIS contagion model for disease spread, where besides the description of local contacts, the influence of contact times has also been modeled. Hydrodynamic approximations of the coupled system are derived. Finally, simulations of the hydrodynamic model are carried out using a mesh-free particle method. Different numerical test cases are investigated, including uni- and bi-directional flow in a passage with and without obstacles.


2016 ◽  
Vol 715 ◽  
pp. 198-202
Author(s):  
Ryota Shimono ◽  
Keiko Watanabe

The phenomena that occur during high-speed penetration of a projectile into sand particles are interesting subjects in engineering. The macro-scale research themes are the behavior of the ejected sand particles and the progress of the high-speed projectile, while the micro-scale research themes are the deformation and fragmentation of a single sand particle. Studies of these unique phenomena were conducted using both experiments and numerical simulation. Although accurate simulation of the behavior of sand particles during high-speed penetration is difficult because sand particles have characteristics of both fluids and solids, the reproducibility of the actual phenomena has improved in recent years with the development of particle methods. In our research, we conducted simulations of the phenomena using Smoothed Particle Hydrodynamics (SPH), which is a mesh-free, particle-based method. The results showed the possibility of accurate reproduction during high-speed projectile penetration into sand particles at the macro-scale.


2018 ◽  
Vol 15 (03) ◽  
pp. 1850011 ◽  
Author(s):  
Xiufeng Yang ◽  
Song-Charng Kong

The purpose of this paper is to present and illustrate a smoothed particle hydrodynamics (SPH) method to study the process of a drop impacting on a dry solid surface. SPH is a Lagrangian mesh-free particle method that offers advantages in modeling the evolution of the liquid surface during drop impact. A new surface tension model is used. The artificial viscosity is also used, which is demonstrated to be, approximately, a linear function of the dynamic viscosity of the liquid. The SPH method is used to simulate different liquid drops impacting on dry surfaces. The numerical results agree with experimental data obtained from the literature. The influence of various parameters on the drop impact, including impact velocity, diameter, viscosity, surface tension, and density of the drop, is also studied. The results show that the dimensionless spreading diameter of the drop increases if the impact velocity, diameter, or density increases, while the increase in viscosity and surface tension decreases the spreading diameter. The results indicate that the drop impact depends more strongly on the viscosity and impact velocity than on the diameter, surface tension, and density of the drop. In addition to the impact of a spherical drop, the impact of an ellipsoidal drop on a dry surface is also studied. The results show that the aspect ratio of the drop has a significant influence on the outcome of drop impact.


2008 ◽  
Vol 227 (18) ◽  
pp. 8417-8436 ◽  
Author(s):  
E.-S. Lee ◽  
C. Moulinec ◽  
R. Xu ◽  
D. Violeau ◽  
D. Laurence ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document