MPS mesh-free particle method for multiphase flows

2012 ◽  
Vol 229-232 ◽  
pp. 13-26 ◽  
Author(s):  
Ahmad Shakibaeinia ◽  
Yee-Chung Jin
2011 ◽  
Vol 49 (5) ◽  
pp. 649-656 ◽  
Author(s):  
Aidin Jabbari Sahebari ◽  
Yee-Chung Jin ◽  
Ahmad Shakibaeinia

Author(s):  
Kailun Guo ◽  
Ronghua Chen ◽  
Suizheng Qiu ◽  
Wenxi Tian ◽  
Guanghui Su ◽  
...  

Multiphase flow widely exists in the nature and engineering. The two-phase flow is the highlight of the studies about the flow in the vessel and steam explosion in nuclear severe accidents. The Moving Particle Semi-implicit (MPS) method is a fully-Lagrangian particle method without grid mesh which focuses on tracking the single particle and concerns with its movement. It has advantages in tracking complex multiphase flows compared with gird methods, and thus shows great potential in predicting multiphase flows. The objective of this thesis is to develop a general multiphase particle method based on the original MPS method and thus this work is of great significance for improving the numerical method for simulating the instability in reactor severe accident and two-phase flows in vessel. This research is intended to provide a study of the instability based on the MPS method. Latest achievements of mesh-free particle methods in instability are researched and a new multiphase MPS method, which is based on the original one, for simulating instability has been developed and validated. Based on referring to other researchers’ papers, the Pressure Poisson Equation (PPE), the viscosity term, the free surface particle determination part and the surface tension model are optimized or added. The numerical simulation on stratification behavior of two immiscible flows is carried out and results are analyzed after data processing. It is proved that the improved MPS method is more accurate than the original method in analysis of multiphase flows. In this paper, the main purposes are simulating and discussing Rayleigh-Taylor (R-T) instability and Kelvin-Helmholtz (K-H) instability. R-T and K-H instability play an important role in the mixing process of many layered flows. R-T instability occurs when a lower density fluid is supported by another density higher fluid or higher density fluid is accelerated by lower density fluid, and the resulting small perturbation increases and eventually forms turbulence. K-H instability is a small disturbance for two different densities, such as waves, at the interface of the two-phase fluid after giving a fixed acceleration in the fluid. Turbulence generated by R-T instability and K-H instability has an important effect in applications such as astrophysics, geophysics, and nuclear science.


2007 ◽  
Vol 43 (4) ◽  
pp. 1333-1336 ◽  
Author(s):  
Guido Ala ◽  
Elisa Francomano ◽  
Adele Tortorici ◽  
Elena Toscano ◽  
Fabio Viola

Author(s):  
Parveena Shamim Abdul Salam ◽  
Wolfgang Bock ◽  
Axel Klar ◽  
Sudarshan Tiwari

Modeling and simulation of disease spreading in pedestrian crowds have recently become a topic of increasing relevance. In this paper, we consider the influence of the crowd motion in a complex dynamical environment on the course of infection of the pedestrians. To model the pedestrian dynamics, we consider a kinetic equation for multi-group pedestrian flow based on a social force model coupled with an Eikonal equation. This model is coupled with a non-local SEIS contagion model for disease spread, where besides the description of local contacts, the influence of contact times has also been modeled. Hydrodynamic approximations of the coupled system are derived. Finally, simulations of the hydrodynamic model are carried out using a mesh-free particle method. Different numerical test cases are investigated, including uni- and bi-directional flow in a passage with and without obstacles.


2016 ◽  
Vol 715 ◽  
pp. 198-202
Author(s):  
Ryota Shimono ◽  
Keiko Watanabe

The phenomena that occur during high-speed penetration of a projectile into sand particles are interesting subjects in engineering. The macro-scale research themes are the behavior of the ejected sand particles and the progress of the high-speed projectile, while the micro-scale research themes are the deformation and fragmentation of a single sand particle. Studies of these unique phenomena were conducted using both experiments and numerical simulation. Although accurate simulation of the behavior of sand particles during high-speed penetration is difficult because sand particles have characteristics of both fluids and solids, the reproducibility of the actual phenomena has improved in recent years with the development of particle methods. In our research, we conducted simulations of the phenomena using Smoothed Particle Hydrodynamics (SPH), which is a mesh-free, particle-based method. The results showed the possibility of accurate reproduction during high-speed projectile penetration into sand particles at the macro-scale.


2018 ◽  
Vol 15 (03) ◽  
pp. 1850011 ◽  
Author(s):  
Xiufeng Yang ◽  
Song-Charng Kong

The purpose of this paper is to present and illustrate a smoothed particle hydrodynamics (SPH) method to study the process of a drop impacting on a dry solid surface. SPH is a Lagrangian mesh-free particle method that offers advantages in modeling the evolution of the liquid surface during drop impact. A new surface tension model is used. The artificial viscosity is also used, which is demonstrated to be, approximately, a linear function of the dynamic viscosity of the liquid. The SPH method is used to simulate different liquid drops impacting on dry surfaces. The numerical results agree with experimental data obtained from the literature. The influence of various parameters on the drop impact, including impact velocity, diameter, viscosity, surface tension, and density of the drop, is also studied. The results show that the dimensionless spreading diameter of the drop increases if the impact velocity, diameter, or density increases, while the increase in viscosity and surface tension decreases the spreading diameter. The results indicate that the drop impact depends more strongly on the viscosity and impact velocity than on the diameter, surface tension, and density of the drop. In addition to the impact of a spherical drop, the impact of an ellipsoidal drop on a dry surface is also studied. The results show that the aspect ratio of the drop has a significant influence on the outcome of drop impact.


Sign in / Sign up

Export Citation Format

Share Document