scholarly journals EFFECT OF WASTE TEA (CAMELLIA SINENSIS) WOOD FIBERS AND MAPE ON SOME PROPERTIES OF HIGH DENSITY POLYETHYLENE (HDPE) BASED POLYMER COMPOSITES

2021 ◽  
Vol 5 (2) ◽  
pp. 606-619
Author(s):  
İlkay ATAR ◽  
İbrahim Halil BAŞBOĞA ◽  
Kadir KARAKUS ◽  
Fatih MENGELOĞLU
2016 ◽  
Vol 860 ◽  
pp. 49-52 ◽  
Author(s):  
Munir Tasdemir ◽  
Mustafa Kemal Bilici ◽  
Mehmet Kurt

In the present study, we attempt to use powder of glass spheres filler and reinforce material in HDPE to produce composite structure and then evaluate its mechanical properties to study the effect of welding parameters and filler content on mechanical properties of HDPE. The effect of welding parameters (tool rotational speed, the plunge depth and the dwell time) on friction stir spot welding properties of high density polyethylene/glass spheres (hollow) polymer composites sheets was studied.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1459
Author(s):  
Agbelenko Koffi ◽  
Fayçal Mijiyawa ◽  
Demagna Koffi ◽  
Fouad Erchiqui ◽  
Lotfi Toubal

Wood–plastic composites have emerged and represent an alternative to conventional composites reinforced with synthetic carbon fiber or glass fiber–polymer. A wide variety of wood fibers are used in WPCs including birch fiber. Birch is a common hardwood tree that grows in cool areas such as the province of Quebec, Canada. The effect of the filler proportion on the mechanical properties, wettability, and thermal degradation of high-density polyethylene/birch fiber composite was studied. High-density polyethylene, birch fiber and maleic anhydride polyethylene as coupling agent were mixed and pressed to obtain test specimens. Tensile and flexural tests, scanning electron microscopy, dynamic mechanical analysis, differential scanning calorimetry, thermogravimetry analysis and surface energy measurement were carried out. The tensile elastic modulus increased by 210% as the fiber content reached 50% by weight while the flexural modulus increased by 236%. The water droplet contact angle always exceeded 90°, meaning that the material remained hydrophobic. The thermal decomposition mass loss increased proportional with the percentage of fiber, which degraded at a lower temperature than the HDPE did. Both the storage modulus and the loss modulus increased with the proportion of fiber. Based on differential scanning calorimetry, neither the fiber proportion nor the coupling agent proportion affected the material melting temperature.


BioResources ◽  
2012 ◽  
Vol 7 (4) ◽  
Author(s):  
Lu Shang ◽  
Guangping Han ◽  
Fangzheng Zhu ◽  
Jiansheng Ding ◽  
Todd Shupe ◽  
...  

Holzforschung ◽  
2016 ◽  
Vol 70 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Manuel R. Pelaez-Samaniego ◽  
Vikram Yadama ◽  
Manuel Garcia-Perez ◽  
Eini Lowell ◽  
Rui Zhu ◽  
...  

AbstractHot water extraction (HWE) partially removes hemicelluloses from wood while leaving the majority of the lignin and cellulose; however, the lignin partially migrates to the inner surfaces of the cell wall where it can be deposited as a layer that is sometimes visible as droplets. This lignin-rich material was isolated via Soxhlet extraction with dichloromethane to investigate its rheological behavior in blends with high-density polyethylene (HDPE), a common material in wood plastic composites (WPCs). Pyrolysis gas-chromatography/mass spectrometry (Py-GC/MS) and electrospray ion mass spectrometry (ESI/MS) confirmed that the isolated material is constituted mainly of low-molecular-weight lignin oligomers. The blends of HDPE/isolated lignin, in varying ratios, were tested by means of dynamic rheology. A “shoulder” was found in plots “shear storage moduli (G′) vs. frequency sweep” and a shift of the terminal zone to lower frequencies was observed. Apparently, this shoulder is caused by the elastic contribution of the interfacial tension between the blend components. The rheology of WPCs produced from HWE wood and HDPE shows a similar shoulder in G′ plots, suggesting that the HDPE/lignin blends are in part responsible for the shape of the G′ curves.


2015 ◽  
Vol 55 (11) ◽  
pp. 2448-2456 ◽  
Author(s):  
Qianchao Mao ◽  
Tom P. Wyatt ◽  
Jinnan Chen ◽  
Jian Wang

Sign in / Sign up

Export Citation Format

Share Document