scholarly journals Robust Pharmacodynamic Effect of LY3202626, a Central Nervous System Penetrant, Low Dose BACE1 Inhibitor, in Humans and Nonclinical Species

2022 ◽  
pp. 1-15
Author(s):  
Brian A. Willis ◽  
Stephen L. Lowe ◽  
Scott A. Monk ◽  
Patrick J. Cocke ◽  
Christopher D. Aluise ◽  
...  

Background: The development of beta-site amyloid-beta precursor protein cleaving enzyme (BACE) 1 inhibitors for the treatment of Alzheimer’s disease requires optimization of inhibitor potency, selectivity, and brain penetration. Moreover, there is a need for low-dose compounds since liver toxicity was found with some BACE inhibitors. Objective: To determine whether the high in vitro potency and robust pharmacodynamic effect of the BACE inhibitor LY3202626 observed in nonclinical species translated to humans. Methods: The effect of LY3202626 versus vehicle on amyloid-β (Aβ) levels was evaluated in a series of in vitro assays, as well as in in vivo and multi-part clinical pharmacology studies. Aβ levels were measured using analytical biochemistry assays in brain, plasma, and cerebrospinal fluid (CSF) of mice, dogs and humans. Nonclinical data were analyzed using an ANOVA followed by Tukey’s post hoc test and clinical data used summary statistics. Results: LY3202626 exhibited significant human BACE1 inhibition, with an IC50 of 0.615±0.101 nM in a fluorescence resonance energy transfer assay and an EC50 of 0.275±0.176 nM for lowering Aβ 1–40 and 0.228±0.244 nM for Aβ 1–42 in PDAPP neuronal cultures. In dogs, CSF Aβ 1hboxx concentrations were significantly reduced by ∼80% at 9 hours following a 1.5 mg/kg dose. In humans, CSF Aβ 1–42 was reduced by 73.1±7.96 % following administration of 6 mg QD. LY3202626 was found to freely cross the blood-brain barrier in dogs and humans. Conclusion: LY3202626 is a potent BACE1 inhibitor with high blood-brain barrier permeability. The favorable safety and pharmacokinetic/pharmacodynamic profile of LY3202626 supports further clinical development.

Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2843
Author(s):  
Stefan Saretz ◽  
Gabriele Basset ◽  
Liridona Useini ◽  
Markus Laube ◽  
Jens Pietzsch ◽  
...  

All over the world, societies are facing rapidly aging populations combined with a growing number of patients suffering from Alzheimer’s disease (AD). One focus in pharmaceutical research to address this issue is on the reduction of the longer amyloid-β (Aβ) fragments in the brain by modulation of γ-secretase, a membrane-bound protease. R-Flurbiprofen (tarenflurbil) was studied in this regard but failed to show significant improvement in AD patients in a phase 3 clinical trial. This was mainly attributed to its low ability to cross the blood–brain barrier (BBB). Here, we present the synthesis and in vitro evaluation of a racemic meta-carborane analogue of flurbiprofen. By introducing the carborane moiety, the hydrophobicity could be shifted into a more favourable range for the penetration of the blood–brain barrier, evident by a logD7.4 value of 2.0. Furthermore, our analogue retained γ-secretase modulator activity in comparison to racemic flurbiprofen in a cell-based assay. These findings demonstrate the potential of carboranes as phenyl mimetics also in AD research.


2021 ◽  
Author(s):  
Yiran Huang ◽  
Hanah Na ◽  
Liang Sun ◽  
Karna Terpstra ◽  
Kai Gui ◽  
...  

The aggregation of amyloid β (Aβ) peptides is a significant hallmark of Alzheimer’s Disease (AD) and the inhibition and detection of Aβ aggregates are important for the treatment and diagnosis of AD. Herein, a series of benzothiazole-based luminescent Ir(III) complexes <b>HN-1</b> to <b>HN-8</b> were reported, which exhibit appreciable Aβ aggregation inhibition ability <i>in vitro</i> and in living cells. In addition, they are capable of inducing a fluorescence turn-on effect when binding to Aβ fibrils and oligomers. Most importantly, compared to previously reported cationic metal complexes, the neutral Ir complexes reported here show optimal Log D values, which suggest these compounds should have enhanced blood brain barrier (BBB) permeability. Most importantly, <i>in vivo</i> studies show that the neutral Ir complexes <b>HN-2</b>, <b>HN-3</b>, and <b>HN-8</b> successfully penetrate the BBB and stain amyloid plaques in AD mice brains after a 10-day treatment via i.p. injection, which is unprecedented for Ir(III) complexes, and thus can be used as lead compounds for AD therapeutics development.


2021 ◽  
Author(s):  
Yiran Huang ◽  
Hanah Na ◽  
Liang Sun ◽  
Karna Terpstra ◽  
Kai Gui ◽  
...  

The aggregation of amyloid β (Aβ) peptides is a significant hallmark of Alzheimer’s Disease (AD) and the inhibition and detection of Aβ aggregates are important for the treatment and diagnosis of AD. Herein, a series of benzothiazole-based luminescent Ir(III) complexes <b>HN-1</b> to <b>HN-8</b> were reported, which exhibit appreciable Aβ aggregation inhibition ability <i>in vitro</i> and in living cells. In addition, they are capable of inducing a fluorescence turn-on effect when binding to Aβ fibrils and oligomers. Most importantly, compared to previously reported cationic metal complexes, the neutral Ir complexes reported here show optimal Log D values, which suggest these compounds should have enhanced blood brain barrier (BBB) permeability. Most importantly, <i>in vivo</i> studies show that the neutral Ir complexes <b>HN-2</b>, <b>HN-3</b>, and <b>HN-8</b> successfully penetrate the BBB and stain amyloid plaques in AD mice brains after a 10-day treatment via i.p. injection, which is unprecedented for Ir(III) complexes, and thus can be used as lead compounds for AD therapeutics development.


2020 ◽  
Vol 21 (3) ◽  
pp. 934 ◽  
Author(s):  
Romain Versele ◽  
Mariangela Corsi ◽  
Andrea Fuso ◽  
Emmanuel Sevin ◽  
Rita Businaro ◽  
...  

Alzheimer’s disease (AD) is characterized by the abnormal accumulation of amyloid-β (Aβ) peptides in the brain. The pathological process has not yet been clarified, although dysfunctional transport of Aβ across the blood–brain barrier (BBB) appears to be integral to disease development. At present, no effective therapeutic treatment against AD exists, and the adoption of a ketogenic diet (KD) or ketone body (KB) supplements have been investigated as potential new therapeutic approaches. Despite experimental evidence supporting the hypothesis that KBs reduce the Aβ load in the AD brain, little information is available about the effect of KBs on BBB and their effect on Aβ transport. Therefore, we used a human in vitro BBB model, brain-like endothelial cells (BLECs), to investigate the effect of KBs on the BBB and on Aβ transport. Our results show that KBs do not modify BBB integrity and do not cause toxicity to BLECs. Furthermore, the presence of KBs in the culture media was combined with higher MCT1 and GLUT1 protein levels in BLECs. In addition, KBs significantly enhanced the protein levels of LRP1, P-gp, and PICALM, described to be involved in Aβ clearance. Finally, the combined use of KBs promotes Aβ efflux across the BBB. Inhibition experiments demonstrated the involvement of LRP1 and P-gp in the efflux. This work provides evidence that KBs promote Aβ clearance from the brain to blood in addition to exciting perspectives for studying the use of KBs in therapeutic approaches.


2012 ◽  
Vol 32 (4) ◽  
pp. 628-632 ◽  
Author(s):  
Thorsten Pflanzner ◽  
Benjamin Petsch ◽  
Bettina André-Dohmen ◽  
Andreas Müller-Schiffmann ◽  
Sabrina Tschickardt ◽  
...  

The blood—brain barrier (BBB) facilitates amyloid-β (Aβ) exchange between the blood and the brain. Here, we found that the cellular prion protein (PrPc), a putative receptor implicated in mediating Aβ neurotoxicity in Alzheimer's disease (AD), participates in Aβ transcytosis across the BBB. Using an in vitro BBB model, [125I]-Aβ1–40 transcytosis was reduced by genetic knockout of PrPc or after addition of a competing PrPc-specific antibody. Furthermore, we provide evidence that PrPc is expressed in endothelial cells and, that monomeric Aβ1–40 binds to PrPc. These observations provide new mechanistic insights into the role of PrPc in AD.


2018 ◽  
Vol 64 (4) ◽  
pp. 1195-1211 ◽  
Author(s):  
Yordenca Lamartinière ◽  
Marie-Christine Boucau ◽  
Lucie Dehouck ◽  
Markus Krohn ◽  
Jens Pahnke ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document