An Approach to Select the Optimum Rock Failure Criterion for Determining a Safe Mud Window through Wellbore Stability Analysis

2018 ◽  
Vol 15 (2) ◽  
pp. 127-140
Author(s):  
Reza Anari ◽  
Arash Ebrahimabadi
2018 ◽  
Vol 50 ◽  
pp. 166-180 ◽  
Author(s):  
Seyedalireza Khatibi ◽  
Azadeh Aghajanpour ◽  
Mehdi Ostadhassan ◽  
Oveis Farzay

SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 1957-1981 ◽  
Author(s):  
Chao Liu ◽  
Yanhui Han ◽  
Hui–Hai Liu ◽  
Younane N. Abousleiman

Summary When drilling through naturally fractured formations, the existence of natural fractures affects the fluid diffusion and stress distribution around the wellbore and induces degradation of rock strength. For chemically active formations, such as shale, the chemical–potential difference between the drilling mud and the shale–clay matrix further complicates the nonmonotonic coupled pore–pressure processes in and around the wellbore. In this work, we apply a recently formulated theory of dual–porosity/permeability porochemoelectroelasticity to predict the time evolution of mud–weight windows, while calculating stresses and pore pressure around an inclined wellbore drilled in a fractured shale formation. The effects of natural–fracture geometric and spatial distributions coupled with the chemical activity are considered in the wellbore–stability analysis. To account for the degrading effect of the fractured shale matrix on the bulk rock strength, a modified Hoek–Brown (MHB) criterion is developed to more closely describe the in–situ state of stress effects on the compressive shearing strength at great depth. Compared with the original Hoek–Brown (HB) failure criterion, the MHB criterion considers the influence of the intermediate principal stress and thus shows better agreement with true–triaxial data for various rocks at varying stress levels. The MHB criterion converges to the original HB criterion when the confining in–situ stresses are equal. Two field case studies indicate that this novel integrative methodology is capable of predicting the operational drilling–mud–weight windows used in these two cases. Another advantage of this newly developed technique is that it can be used as a back–analysis tool to estimate the fracture–matrix permeability from field operational data.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Ahmed K. Abbas ◽  
Ralph E. Flori ◽  
Mortadha Alsaba

The Lower Cretaceous Zubair Formation is a regionally extended gas- and oil-producing sandstone sequence in Southern Iraq. Due to the weak nature of the Zubair Formation, the lack of wellbore stability is one of the most critical challenges that continuously appears during the drilling development operations. Problems associated with lack of wellbore stability, such as the tight hole, shale caving, stuck pipe, and sidetracking, are both time-consuming and expensive. This study aimed to construct a geotechnical model based on offset well data, including rock mechanical properties, in situ stresses, and formation pore pressure, coupled with suitable rock failure criteria. Mohr–Coulomb and Mogi–Coulomb failure criteria were used to predict the potential rock failure around the wellbore. The effect of the inclination and azimuth of the deviated wells on the shear failure and tensile failure mud weights was investigated to optimize the wellbore trajectory. The results show that the best orientation to drill highly deviated wells (i.e., inclinations higher than 60 deg) is along to the minimum horizontal stress (140 deg). The recommended mud weight for this selected well trajectory ranges from 1.45 to 1.5 g/cc. This study emphasizes that a wellbore stability analysis can be applied as a cost-effective tool to guide future highly deviated boreholes for better drilling performance by reducing the nonproductive time.


2021 ◽  
Author(s):  
Hussain AlBahrani ◽  
Nobuo Morita

Abstract In many drilling scenarios that include deep wells and highly stressed environments, the mud weight required to completely prevent wellbore instability can be impractically high. In such cases, what is known as risk-controlled wellbore stability criterion is introduced. This criterion allows for a certain level of wellbore instability to take place. This means that the mud weight calculated using this criterion will only constrain wellbore instability to a certain manageable level, hence the name risk-controlled. Conventionally, the allowable level of wellbore instability in this type of models has always been based on the magnitude of the breakout angle. However, wellbore enlargements, as seen in calipers and image logs, can be highly irregular in terms of its distribution around the wellbore. This irregularity means that risk-controlling the wellbore instability through the breakout angle might not be always sufficient. Instead, the total volume of cavings is introduced as the risk control parameter for wellbore instability. Unlike the breakout angle, the total volume of cavings can be coupled with a suitable hydraulics model to determine the threshold of manageable instability. The expected total volume of cavings is determined using a machine learning (ML) assisted 3D elasto-plastic finite element model (FEM). The FEM works to model the interval of interest, which eventually provides a description of the stress distribution around the wellbore. The ML algorithm works to learn the patterns and limits of rock failure in a supervised training manner based on the wellbore enlargement seen in calipers and image logs from nearby offset wells. Combing the FEM output with the ML algorithm leads to an accurate prediction of shear failure zones. The model is able to predict both the radial and circumferential distribution of enlargements at any mud weight and stress regime, which leads to a determination of the expected total volume of cavings. The model implementation is first validated through experimental data. The experimental data is based on true-triaxial tests of bored core samples. Next, a full dataset from offset wells is used to populate and train the model. The trained model is then used to produce estimations of risk-controlled stability mud weights for different drilling scenarios. The model results are compared against those produced by conventional methods. Finally, both the FEM-ML model and the conventional methods results are compared against the drilling experience of the offset wells. This methodology provides a more comprehensive and new solution to risk controlling wellbore instability. It relies on a novel process which learns rock failure from calipers and image logs.


Sign in / Sign up

Export Citation Format

Share Document