Wellbore-Stability Analysis by Integrating a Modified Hoek-Brown Failure Criterion With Dual-Porochemoelectroelastic Theory (includes associated erratum)

SPE Journal ◽  
2019 ◽  
Vol 24 (05) ◽  
pp. 1957-1981 ◽  
Author(s):  
Chao Liu ◽  
Yanhui Han ◽  
Hui–Hai Liu ◽  
Younane N. Abousleiman

Summary When drilling through naturally fractured formations, the existence of natural fractures affects the fluid diffusion and stress distribution around the wellbore and induces degradation of rock strength. For chemically active formations, such as shale, the chemical–potential difference between the drilling mud and the shale–clay matrix further complicates the nonmonotonic coupled pore–pressure processes in and around the wellbore. In this work, we apply a recently formulated theory of dual–porosity/permeability porochemoelectroelasticity to predict the time evolution of mud–weight windows, while calculating stresses and pore pressure around an inclined wellbore drilled in a fractured shale formation. The effects of natural–fracture geometric and spatial distributions coupled with the chemical activity are considered in the wellbore–stability analysis. To account for the degrading effect of the fractured shale matrix on the bulk rock strength, a modified Hoek–Brown (MHB) criterion is developed to more closely describe the in–situ state of stress effects on the compressive shearing strength at great depth. Compared with the original Hoek–Brown (HB) failure criterion, the MHB criterion considers the influence of the intermediate principal stress and thus shows better agreement with true–triaxial data for various rocks at varying stress levels. The MHB criterion converges to the original HB criterion when the confining in–situ stresses are equal. Two field case studies indicate that this novel integrative methodology is capable of predicting the operational drilling–mud–weight windows used in these two cases. Another advantage of this newly developed technique is that it can be used as a back–analysis tool to estimate the fracture–matrix permeability from field operational data.

SPE Journal ◽  
2018 ◽  
Vol 23 (04) ◽  
pp. 1019-1038 ◽  
Author(s):  
Feifei Zhang ◽  
Yongfeng Kang ◽  
Zhaoyang Wang ◽  
Stefan Miska ◽  
Mengjiao Yu ◽  
...  

Summary This paper identifies wellbore-stability concerns caused by transient swab/surge pressures during deepwater-drilling tripping and reaming operations. Wellbore-stability analysis that couples transient swab/surge wellbore-pressure oscillations and in-situ-stress field oscillations in the near-wellbore (NWB) zone in deepwater drilling is presented. A transient swab/surge model is developed by considering drillstring components, wellbore structure, formation elasticity, pipe elasticity, fluid compressibility, fluid rheology, and the flow between wellbore and formation. Real-time pressure oscillations during tripping/reaming are obtained. On the basis of geomechanical principles, in-situ stress around the wellbore is calculated by coupling transient wellbore pressure with swab/surge pressure, pore pressure, and original formation-stress status to perform wellbore-stability analysis. By applying the breakout failure and wellbore-fracture failure in the analysis, a work flow is proposed to obtain the safe-operating window for tripping and reaming processes. On the basis of this study, it is determined that the safe drilling-operation window for wellbore stability consists of more than just fluid density. The oscillation magnitude of transient wellbore pressure can be larger than the frictional pressure loss during the normal-circulation process. With the effect of swab/surge pressure, the safe-operating window can become narrower than expected. The induced pore pressure decreases monotonically as the radial distance increases, and it is limited only to the NWB region and dissipates within one to two hole diameters away from the wellbore. This study provides insight into the integration of wellbore-stability analysis and transient swab/surge-pressure analysis, which is discussed rarely in the literature. It indicates that tripping-induced transient-stress and pore-pressure changes can place important impacts on the effective-stress clouds for the NWB region, which affect the wellbore-stability status significantly.


2001 ◽  
Vol 41 (1) ◽  
pp. 609
Author(s):  
X. Chen ◽  
C.P. Tan ◽  
C.M. Haberfield

To prevent or minimise wellbore instability problems, it is critical to determine the optimum wellbore profile and to design an appropriate mud weight program based on wellbore stability analysis. It is a complex and iterative decisionmaking procedure since various factors, such as in-situ stress regime, material strength and poroelastic properties, strength and poroelastic anisotropies, initial and induced pore pressures, must be considered in the assessment and determination.This paper describes the methodology and procedure for determination of optimum wellbore profile and mud weight program based on rock mechanics consideration. The methodology is presented in the form of guideline charts and the procedure of applying the methodology is described. The application of the methodology and procedure is demonstrated through two field case studies with different in-situ stress regimes in Australia and Indonesia.


2020 ◽  
Author(s):  
Michal Kruszewski ◽  
Giordano Montegrossi ◽  
Tobias Backers ◽  
Erik Saenger

<p>The Rhine-Ruhr region is one of the largest metropolitan areas in Europe, with more than 10 million inhabitants, located in western Germany. The region is defined by the rich coal-bearing layers from the upper Carboniferous period, extracted as early as the 13<sup>th</sup> century and belonging to the sub-Variscan Trough. In 2018, after more than 700 years of exploration, the last black coal mine was closed in the area. One of the most promising re-uses of the abandoned coal mines is the exploitation of geothermal energy sources. Additionally, to the geothermal energy extracted from existing mines, potential deep geothermal reservoirs within the Rhine-Ruhr, may exist at depths between 4.5 and 6 km, where Devonian limestones were found. Based on the available temperature profiles from deep exploration wells in the area, geothermal gradient amounts to 36.8<sup>o</sup>C/km and results in reservoir temperatures between 170<sup>o</sup>C and 220<sup>o</sup>C, which will enable not only heat but even electricity production. This study provides a comprehensive investigation of the full in-situ stress state tensor with its anisotropy and presents crucial physical formation and natural fracture properties. The data for this investigation was acquired from the extensive borehole logging and geomechanical campaigns carried out in deep coal exploration wells throughout the 1980s as well as from the recent shallow geothermal research wells. Acquired data allowed assessing critically-stressed, i.e. hydraulically active, fractures undergoing shear displacement, being primarily responsible for the future geothermal reservoir permeability. Extensive sets of microseismic, subsidence and drilling data were used to confirm the results of the analysis. Additionally, wellbore stability analysis and potential drill paths for the future medium-to-deep geothermal wells in the region were assessed. This study is a part of the 3D-RuhrMarie project, which aims to assess the intrinsic seismic risk within the Rhine-Ruhr region to promote safer and economically more efficient exploration and exploitation of the future geothermal resources.</p>


2018 ◽  
Vol 50 ◽  
pp. 166-180 ◽  
Author(s):  
Seyedalireza Khatibi ◽  
Azadeh Aghajanpour ◽  
Mehdi Ostadhassan ◽  
Oveis Farzay

SPE Journal ◽  
2011 ◽  
Vol 16 (04) ◽  
pp. 1010-1028 ◽  
Author(s):  
Minh H. Tran ◽  
Younane N. Abousleiman ◽  
Vinh X. Nguyen

Summary The effects of filter-cake buildup and/or filter-cake-property variation with time on wellbore stability have been plaguing the industry. The increasing use of lost-circulation materials (LCMs) in recent years for wellbore strengthening in weak and/or depleted formations necessitates models that can predict these effects. However, the complexities of effective-stress and pore-pressure evolution around the borehole while drilling, coupled with the transient variation of mud-filtration properties, have delayed such modeling efforts. In this paper, the analytical solutions for the time-dependent effects of mudcake buildup and mudcake properties on the wellbore stresses and formation pore pressure, and thus the safe-drilling-mud-weight window, are derived. The transient effects of mudcake buildup and mudcake buildup coupled with its permeability reduction during filtration on the safe-drilling-mudweight window are illustrated through numerical examples. The results showed that the safe-mudweight windows were greatly affected by the buildup of filter cake and its permeability variation. For example, the analysis for filter-cake buildup with cake permeability of 10–2 md showed that the safe-mudweight window was widened by 0.5 g/cc after 2.5 hours post-excavation when compared to the case of a wellbore without mudcake. On the other hand, a lower mudcake permeability of 10–3 md widened the mudweight window by as much as 1 g/cc. Last but not least, the analyses revealed that even for mudcake permeability as low as 10–3 md, neglecting the permeable nature of the mudcake can result in overestimation of the safe-drilling-mudweight window.


Sign in / Sign up

Export Citation Format

Share Document