scholarly journals IoT Based Solar Panel Tracking System with Weather Monitoring System

2021 ◽  
Author(s):  
K. Dinesh ◽  
Lakshmi Priya. A ◽  
Preethi. T ◽  
Sandhya. M ◽  
Sangeetha. P

Solar power is the burgeoning method of continual energy. The assignment is designed and carried out the use of dual axis sun tracker system. In order to maximise power era from solar, it’s important to introduce sun ray monitoring systems into solar electricity production. A dual-axis tracker can boom power through monitoring solar rays from switching photovoltaic cells in various directions. These photovoltaic cells can rotate in all directions. The LDR (Light Dependent Resistor) have been used to feel the depth of mild at 30 degree every or at 180 degree general and ship the information to microcontroller. This assignment also can be used to experience rain drop, temperature and humidity using sensor and they may be displayed on LCD. We can save the Solar energy in battery.

2021 ◽  
Vol 57 (1) ◽  
pp. 37-44
Author(s):  
O. Drozd ◽  
L. Scherbak

This paper is dedicated to the research of solar energy issues, namely to increase the efficiency of solar panels and to compare the performance of solar panels in different configurations. The author researches and compares the performance of solar panels with and without trackers. The sun is an inexhaustible source of energy that mankind has yet to appreciate. Solar energy is the kinetic energy of radiation (mainly light) generated by thermonuclear reactions in the bowels of the sun. Solar energy is one such alternative, the neglect of which will in the near future lead to catastrophic consequences for humanity. Solar energy is a progressive method of obtaining various types of energy through solar radiation. Solar energy is one of the most promising and dynamic renewable energy sources (RES). Each year, the increase in commissioned capacity is approximately 40-50%. In the last fifteen years alone, the proportion of solar electricity in the world has exceeded the 5% mark. To increase the efficiency of solar panels, designers and engineers are developing new devices and devices, one of which is a solar tracker. A solar tracker is a device that allows you to control the movement of the sun across the sky, as well as move the solar panel to the position where the absorption of sunlight is most effective. After the conducted experiment , calculations an comparison we can see the next results. Without the solar tracker our panel generated maximum power in 2.4 Watt. After the solar tracking system integration, our panel generated almost 20 (19.8) Watt of power! After this comparison we can tell that the generated power increase in 8.25 Watts. We can also admit that the amount of generated power depends on light intensity. But solar panels are the most effective when the solar beam falls perpendicular to solar cell and solar panel is at an angle of 75 – 85 degrees


2021 ◽  
Vol 11 (4) ◽  
pp. 4456-4464
Author(s):  
S.V.G.V.A. Prasad

In recent years the use of solar energy is found to have grown by a large amount. Solar energy is renewable energy and the demand for it as clean energy shows its growth by nearly 50 percent in the past decade. It is estimated that the sun is able to generate energy within 24 hours that the entire population of the world could consume in 27 years. Solar power is the energy from the sun that is converted into thermal or electrical energy. The energy harnessed from the sun's rays is used for a variety of applications like electricity generation, to provide light for the interior environment, and many other domestic, commercial, and industrial purposes. Usage of fossil fuels for electricity production results in increased pollution and this mandates many governments to encourage moving to electricity generation using solar power. The large amount of solar energy that is available is found to be the most appealing source of electricity. Solar panels form a major part of the solar energy setup. Hence in this article let us review the various types of solar panels. This paper also deals with comparing the merits and demerits of the different types of solar panels that are available in the market. A section that presents the efficiency of the different kinds of the solar panel is also present in this paper. The role of temperature coefficient, fire rating, and hail rating in the performance of the solar panel is also addressed in this paper.


2020 ◽  
Author(s):  
Sajadul Alam Saimon ◽  
Rakibul Ahasan

Renewable energy is of great importance for today’s world which is generally produced from natural sources. Countries like Bangladesh has to use this energy to meet their energy demand. Day by day the demand of electricity is increasing in stormy pace but our resource is limited. So using renewable resources i.e. solar power to meet the demand of electricity is highly necessary especially rural and remote areas. This paper examined the nature and extent of solar energy in Boyarjapha village of Paikgachha Upazila of Khulna district to analyse the effects of solar panel in their daily life. Many positive impacts of solar power were found out such as better quality lighting, education, entertainment, communications, business, increasing working hours, women empowerment, increasing awareness etc. There are a few bad effects of solar energy too. But Government intervention is a must to ensure better quality results in coming future. Similarly, government has to take serious steps to advertise solar electricity in remote areas of Bangladesh


2021 ◽  
Vol 2107 (1) ◽  
pp. 012024
Author(s):  
Lim Xin You ◽  
Nordiana Shariffudin ◽  
Mohd Zamri Hasan

Abstract Nowadays, solar energy’s popularity is growing consistently every year, along with the growth of amazing solar technologies, which is considered to be one of the most popular. Non-renewable energy like petrol and gasoline is being replaced with solar energy, which is renewable energy. The main objective of this project is to design and simulate a robot solar system. The robot is developed using Arduino Mega 2560 as the main brain of the system. This system is equipped with a solar tracking system to track the movement of the sun and LDR is used to detect the presence of sunlight. The solar tracker is used to get the maximum efficiency of solar energy and reduce power losses. In addition, the solar tracker can rotate from 0° - 180°, which is the best angle for the solar panel to reach the sunlight. This robot will be attached to the sprinkler system to perform the watering process. This robot is developed for use in the agriculture field to reduce the manpower and cost of the watering process. Three analyses will be conducted in this project such as solar panel analysis, Wi-Fi connectivity analysis and sprinkler system analysis. The result shows the solar panel will gain the highest intensity of the sunlight at 12.00 pm and a sunny day compared to the other time and a cloudy day. The maximum range of Wi-Fi connectivity and the water pump, time used to finish the watering process and watering area will be discussed.


2018 ◽  
Vol 7 (3.18) ◽  
pp. 11
Author(s):  
Musse Mohamud Ahmed ◽  
Mohammad Kamrul Hasan ◽  
Mohammad Shafiq

The main purpose of this paper is to present a novel idea that is based on design and development of an automatic solar tracker system that tracks the Sun's energy for maximum energy output achievement. In this paper, a novel automatic solar tracking system has been developed for small-scale solar energy system. The hardware part and programming part have been concurrently developed in order for the solar tracking system to be possible for it to operate accurately. Arduino Uno R3, Sensor Shield V4 Digital Analog Module, LDR (Light Dependent Resistor), MPU-6050 6DOF 3 Axis Gyroscope has been used for tracking the angular sun movement as shown in Fig. 1. Accelerometer, High-Efficiency Solar Panel, and Tower Pro MG90S Servo Motor have been used for the hardware part. High-level programming language has been embedded in the hardware to operate the tracking system effectively. The tracking system has shown significant improvement of energy delivery to solar panel comparing to the conventional method. All the results will be shown in the full paper. There are three contributions the research presented in this paper which are, i.e. perfect tracking system, the comparison between the static and tracking system and the development of Gyroscope angular movement system which tracks the angular movement of the sun along with another tracking system.  


2019 ◽  
Vol 19 (1) ◽  
pp. 28-32 ◽  
Author(s):  
Muhanned Al-Rawi

AbstractSolar energy is increasingly becoming commonplace in the society with the ever rising electricity bills and reduction in price in solar equipment. Being an “essentially free” form of energy it is necessary to contribute to developments that support or improve the solar energy sector. This paper presents a way to monitor the voltage, current and power output from a solar panel, with the aim of monitoring and projecting the output from a solar farm.


Author(s):  
Collins O. Ojo ◽  
Damien Pont ◽  
Enrico Conte ◽  
Richard Carroni

The integration of steam from a central-receiver solar field into a combined cycle power plant (CCPP) provides an option to convert solar energy into electricity at the highest possible efficiency, because of the high pressure and temperature conditions of the solar steam, and at the lowest capital investment, because the water-steam cycle of the CCPP is in shared use with the solar field. From the operational point of view, the plant operator has the option to compensate the variability of the solar energy with fossil fuel electricity production, to use the solar energy to save fuel and to boost the plant power output, while reducing the environmental footprint of the plant operation. Alstom is able to integrate very large amounts of solar energy in its new combined-cycle power plants, in the range of the largest solar field ever built (Ivanpah Solar Power Facility, California, 3 units, total 392 MWel). The performance potential of such integration is analyzed both at base load and at part load operation of the plant. Additionally, the potential for solar retrofit of existing combined-cycle power plants is assessed. In this case, other types of concentrating solar power technologies than central receiver (linear Fresnel and trough) may be best suited to the specific conditions. Alstom is able to integrate any of these technologies into existing combined-cycle power plants.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Sanghyun Lee

Photovoltaics (PV-also called solar photovoltaic devices) are used to harness the power of the sun via the electronic process that occurs within semiconductor cells. The solar energy is absorbed by the cells, which causes the electrons to break away from their atoms, allowing them to flow within the material to produce electricity. This electricity will become the renewable energy for Kentucky, as the generation of coal will but come to a stop within the near future. Like Denmark who is running on 100% renewable generation we must stride to become fully operational on solar. In the present work, we systematically studied about renewable energy resources, in particular, solar energy for the application of photovoltaic panels in Eastern Kentucky. By analyzing data from our PV cells at Morehead State University designed to follow the direction of the sun for optimized output and by incorporating MPPT charge controllers, we have constructed a maximum power algorithm that performs best for the location. Utilizing these, measurements of daily electricity production in comparison to the average power needed for household use has validated our research. With the advancements in solar cell technology what was once impossible is now reality, as solar power can easily power this region based on our data. Knowing this, being a prime location we can now push to enable the advancement of renewable energy production and become less dependent on fossil fuels, thus creating an infrastructure that will run off solar power.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 312
Author(s):  
Abdulaziz Alhammad ◽  
Qian (Chayn) Sun ◽  
Yaguang Tao

Many countries have set a goal for a carbon neutral future, and the adoption of solar energy as an alternative energy source to fossil fuel is one of the major measures planned. Yet not all locations are equally suitable for solar energy generation. This is due to uneven solar radiation distribution as well as various environmental factors. A number of studies in the literature have used multicriteria decision analysis (MCDA) to determine the most suitable places to build solar power plants. To the best of our knowledge, no study has addressed the subject of optimal solar plant site identification for the Al-Qassim region, although developing renewable energy in Saudi Arabia has been put on the agenda. This paper developed a spatial MCDA framework catering to the characteristics of the Al-Qassim region. The framework adopts several tools used in Geographic Information Systems (GIS), such as Random Forest (RF) raster classification and model builder. The framework aims to ascertain the ideal sites for solar power plants in the Al-Qassim region in terms of the amount of potential photovoltaic electricity production (PVOUT) that could be produced from solar energy. For that, a combination of GIS and Analytical Hierarchy Process (AHP) techniques were employed to determine five sub-criteria weights (Slope, Global Horizontal Irradiance (GHI), proximity to roads, proximity to residential areas, proximity to powerlines) before performing spatial MCDA. The result showed that ‘the most suitable’ and ‘suitable’ areas for the establishment of solar plants are in the south and southwest of the region, representing about 17.53% of the study area. The ‘unsuitable’ areas account for about 10.17% of the total study area, which is mainly concentrated in the northern part. The rest of the region is further classified into ‘moderate’ and ‘restricted’ areas, which account for 46.42% and 25.88%, respectively. The most suitable area for potential solar energy, yields approximately 1905 Kwh/Kwp in terms of PVOUT. The proposed framework also has the potential to be applied to other regions nationally and internationally. This work contributes a reproducible GIS workflow for a low-cost but accurate adoption of a solar energy plan to achieve sustainable development goals.


This paper proposes a design of solar tracking system for capturing maximum amount of solar energy by rotating the solar panel. From sun rise to sun set, the sun changes its direction several times due to which the static solar panel fails to capture maximum solar energy throughout the day. Therefore, it is required to develop a system that is capable of generating electrical energy by making use of maximum amount of solar energy. This paper discloses about the rotatable solar tracking system capable of rotating along the sun direction for tracking maximum amount of solar energy. This advanced technology not only utilize the solar energy more effectively but also improves the efficiency of whole system.


Sign in / Sign up

Export Citation Format

Share Document