A New Determination Method of Network Chain-Length Distribution of Rubber Vulcanizates by Chemorheology

1993 ◽  
Vol 3 (4) ◽  
pp. 199-209
Author(s):  
Kenkichi Murakami
Author(s):  
Burak Erman ◽  
James E. Mark

As was mentioned in chapter 10, end-linking reactions can be used to make networks of known structures, including those having unusual chain-length distributions. One of the uses of networks having a bimodal distribution is to clarify the dependence of ultimate properties on non-Gaussian effects arising from limited-chain extensibility, as was already pointed out. The following chapter provides more detail on this application, and others. In fact, the effect of network chain-length distribution, is one aspect of rubberlike elasticity that has not been studied very much until recently, because of two primary reasons. On the experimental side, the cross-linking techniques traditionally used to prepare the network structures required for rubberlike elasticity have been random, uncontrolled processes, as was mentioned in chapter 10. Examples are vulcanization (addition of sulfur), peroxide thermolysis (free-radical couplings), and high-energy radiation (free-radical and ionic reactions). All of these techniques are random in the sense that the number of cross-links thus introduced is not known directly, and two units close together in space are joined irrespective of their locations along the chain trajectories. The resulting network chain-length distribution is unimodal and probably very broad. On the theoretical side, it has turned out to be convenient, and even necessary, to assume a distribution of chain lengths that is not only unimodal, but monodisperse! There are a number of reasons for developing techniques to determine or, even better, control network chain-length distributions. One is to check the “weakest link” theory for elastomer rupture, which states that a typical elastomeric network consists of chains with a broad distribution of lengths, and that the shortest of these chains are the “culprits” in causing rupture. This is attributed to the very limited extensibility associated with their shortness that is thought to cause them to break at relatively small deformations and then act as rupture nuclei. Another reason is to determine whether control of chain-length distribution can be used to maximize the ultimate properties of an elastomer. As was described in chapter 10, a variety of model networks can be prepared using the new synthetic techniques that closely control the placements of crosslinks in a network structure.


1969 ◽  
Vol 42 (3) ◽  
pp. 659-665 ◽  
Author(s):  
S. D. Gehman

Abstract Physical characteristics of rubber network structures usually enumerated and discussed are network chain density, crosslink functionality, average chain length between crosslinks, entanglements which act somewhat like crosslinks, and free chain ends which are network defects. Chemical factors include structure of the chain molecules, type of crosslinks, whether monosulfide, disulfide or polysulfide, or direct carbon-to-carbon bonds. Side effects of vulcanization reactions such as chain scission or combination of minor quantities of chemical fragments from the vulcanizing system are also recognized. One might think that these variables would be adequate to account for physical properties of elastomers but explanations of strength aspects of vulcanizates are still unsatisfactory. Something is missing in these considerations, that is, the distribution of crosslinks along a main chain or the length sequences of monomer units in network chains. Usually a random distribution is implicitly assumed. If the distribution is always random and nothing can be done about it and it cannot be measured anyway, there may seem to be little point in writing about it. However, an ideally random distribution for all crosslinking systems and polymers seems very improbable. The importance of network chain length distribution for physical properties has been, of course, well recognized in theory. Bueche's calculations showed that viscoelastic resistance to deformation increased markedly with increased crosslink functionality, that is, as more chains are involved in the displacement of a crosslink. His molecular theory of tensile strength was based on the concept of short, overloaded network chains which snapped and transferred their loads to neighboring chains. An alternate point of view is that short chains are detrimental because they do not stress orient as well as longer chains.


2019 ◽  
Author(s):  
Dennis Bücker ◽  
Annika Sickinger ◽  
Julian D. Ruiz Perez ◽  
Manuel Oestringer ◽  
Stefan Mecking ◽  
...  

Synthetic polymers are mixtures of different length chains, and their chain length and chain conformation is often experimentally characterized by ensemble averages. We demonstrate that Double-Electron-Electron-Resonance (DEER) spectroscopy can reveal the chain length distribution, and chain conformation and flexibility of the individual n-mers in oligo-(9,9-dioctylfluorene) from controlled Suzuki-Miyaura Coupling Polymerization (cSMCP). The required spin-labeled chain ends were introduced efficiently via a TEMPO-substituted initiator and chain terminating agent, respectively, with an in situ catalyst system. Individual precise chain length oligomers as reference materials were obtained by a stepwise approach. Chain length distribution, chain conformation and flexibility can also be accessed within poly(fluorene) nanoparticles.


2021 ◽  
Author(s):  
amandine pruvost ◽  
stanislas helle ◽  
nicolas szydlowski ◽  
Christian ROLANDO

In the present work, we developed a miniaturized method for determining amylopectin chain length distribution (CLD) by fluorescence-assisted capillary electrophoresis (FACE). The method relies on single granule entrapping into capillaries followed by direct starch gelatinization and amylopectin debranching on carbograph-based solid phase extraction (SPE) cartridges. Sample desalting on HypersepTM tips following APTS-labelling and the use of nanovials allowed for the fluorescence analysis of weakly diluted samples. Consequently, method sensitivity was improved by 500-fold which is compatible with the analysis of single potato starch granules. The method was implemented to determine CLD profiles of single starch granules ranging from 50 to 100 µm in diameter. In these experiments, the relative proportion of starch glucans of up to 30 degrees of polymerization (DP) could be quantified.


Sign in / Sign up

Export Citation Format

Share Document