Non-invasive assessment of tissue oxygenation parameters in diabetic patients foot sole using near infrared spectroscopy

2021 ◽  
pp. 1-10
Author(s):  
M. Brindha ◽  
N.P. Guhan Seshadri ◽  
R. Periyasamy

Background and Objective: Diabetic problems are more common in the lower extremity and linked with high mortality rate which affects public health system. The present study focused on monitoring the changes in tissue oxygenation concentrations using Near infrared spectroscopy system along with temperature and hardness of the foot tissues. Methods: Control subjects (without diabetes) and diabetic patients without neuropathy were selected for this study and three standard foot risk areas were considered. Standard induced ischemic stimulus was given to assess the response of the designed system and to analyze the changes in oxyhemoglobin and deoxyhemoglobin levels during venous occlusion. Results: Results showed significant differences in the tissue oxygenation index value in all three standard areas where oxygenation value at the foot areas were significantly low ( p < 0.05) in diabetic group as compared to control group. Also, significant difference were found in tissue hardness value when comparing between groups, where the diabetic group had significantly high ( p < 0.05) tissue hardness at area 5 and area 8 as compared to control groups. Conclusion: Therefore, the present study concludes that high tissue hardness had significant effect on tissue oxygenation index that affects vascular circulation and this condition could be assessable using NIRS technique in order to find risky areas at the foot sole.

2018 ◽  
pp. emermed-2018-207533
Author(s):  
Jumpei Tsukuda ◽  
Shigeki Fujitani ◽  
Kenichiro Morisawa ◽  
Nobuhiko Shimozawa ◽  
Brandon D Lohman ◽  
...  

Study objectivesNear-infrared spectroscopy is a modality that can monitor tissue oxygenation index (TOI) and has potential to evaluate return of spontaneous circulation (ROSC) during cardiopulmonary resuscitation (CPR). This study’s objectives were to evaluate whether TOI could be associated with ROSC and used to help guide the decision to either terminate CPR or proceed to extracorporeal CPR (ECPR).MethodsIn this observational study, we assessed the patients with out-of-hospital cardiac arrest with non-traumatic cause receiving CPR on arrival at our ED between 2013 and 2016. TOI monitoring was discontinued either on CPR termination after ROSC was reached or on patient death. Patients were classified into two groups: ROSC and non-ROSC group.ResultsOut of 141 patients, 24 were excluded and the remaining 117 were classified as follows: ROSC group (n=44) and non-ROSC group (n=73). ROSC group was significantly younger and more likely to have their event witnessed and bystander CPR. ROSC group showed a higher initial TOI than non-ROSC group (60.5%±17.0% vs 37.9%±13.7%: p<0.01). Area under the curve analysis was more accurate with the initial TOI than without it for predicting ROSC (0.88, 95% CI 0.82 to 0.95 vs 0.79, 95% CI 0.70 to 0.87: p<0.01). TOI cut-off value ≥59% appeared to favour survival to hospital discharge whereas TOI ≤24% was associated with non-ROSC.ConclusionsThis study demonstrated an association between higher initial TOI and ROSC. Initial TOI could increase the accuracy of ROSC prognosis and may be a clinical factor in the decision to terminate CPR and select patients who are to proceed to ECPR.


Author(s):  
Jumpei Tsukuda ◽  
Shigeki Fujitani ◽  
Mahbubur Rahman ◽  
Kenichiro Morisawa ◽  
Takeshi Kawaguchi ◽  
...  

Abstract Background Tissue oxygenation index (TOI) using the near infrared spectroscopy (NIRS) has been demonstrated as a useful indicator to predict return of spontaneous circulation (ROSC) among out-of-hospital cardiac arrest (OHCA) patients in hospital setting. However, it has not been widely examined based on pre-hospital setting. Methods In this prospective observational study, we measured TOI in pre-hospital setting among OHCA patients receiving cardio-pulmonary resuscitation (CPR) during ambulance transportation between 2017 and 2018. Throughout the pre-hospital CPR procedure, TOI was continuously measured. The study population was divided into two subgroups: ROSC group and non-ROSC group. Results Of the 81 patients included in the final analysis, 26 achieved ROSC and 55 did not achieve ROSC. Patients in the ROSC group were significantly younger, had higher ∆TOI (changes in TOI) (5.8 % vs. 1.3 %; p < 0.01), and were more likely to have shockable rhythms and event witnessed than patients in the non-ROSC group. ∆TOI cut-off value of 5 % had highest sensitivity (65.4 %) and specificity (89.3 %) for ROSC. Patients with a cut-off value ≤-2.0 % did not achieve ROSC and while all OHCA patient with a cut-off value ≥ 8.0 % achieved ROSC. In addition, ROSC group had stronger positive correlation between mean chest compression rate and ∆TOI (r = 0.82) than non-ROSC group (r = 0.50). Conclusions This study suggests that ∆ TOI could be a useful indicator to predict ROSC in a pre-hospital setting.


Vascular ◽  
2021 ◽  
pp. 170853812110251
Author(s):  
Tomas Baltrūnas ◽  
Valerija Mosenko ◽  
Artūras Mackevičius ◽  
Vilius Dambrauskas ◽  
Ingrida Ašakienė ◽  
...  

Background Peripheral arterial disease is a stenosis or occlusion of peripheral arteries that results in compromised blood flow and muscle ischemia. The available diagnostic methods are mostly used to measure and visualize blood flow and are not useful in the evaluation of perfusion, especially in diabetic patients, which is now considered to be a research priority by most of the vascular societies around the world as this is still a relatively poorly studied phenomenon. Objective The aim of this review is to explore the clinical significance of muscle tissue oxygenation monitoring in lower-extremity peripheral artery disease diagnosis using the near-infrared spectroscopy method. Methods A systematic search in PubMed, CINAHL, and Cochrane databases was performed to identify clinical near-infrared spectroscopy (NIRS) studies in English and Russian, published until September 2019, involving muscle tissue oxygenation in peripheral arterial disease (PAD). The manuscripts were reviewed by two researchers independently and scored on the quality of the research using MINORS criteria. Results After screening 443 manuscripts, 23 studies ( n = 1580) were included. NIRS-evaluated recovery time seems to be more accurate than ankle-brachial index in diabetic patients to differentiate between moderate and severe claudication. Consistent findings across all the included studies showed that both the oxygenation and deoxygenation rates as well as the recovery times varied from patient to patient and therefore were not suitable for standardization. Conclusions The clinical relevance of routine use of NIRS to diagnose PAD is unproven; therefore, its use is not currently part of standard-of-care for patients with PAD since the absolute values seem to vary significantly, depending on the outside conditions. More data need to be provided on the possible use of NIRS monitoring intraoperatively where the conditions can be more controlled.


2020 ◽  
Vol 57 (6) ◽  
pp. 341-347
Author(s):  
Jaeyeon Chung ◽  
Sang-Hwan Ji ◽  
Young-Eun Jang ◽  
Eun-Hee Kim ◽  
Ji-Hyun Lee ◽  
...  

Near-infrared spectroscopy devices can measure peripheral tissue oxygen saturation (StO<sub>2</sub>). This study aims to compare StO<sub>2</sub> using INVOS® and different O3™ settings (O3<sup>25:75</sup> and O3<sup>30:70</sup>). Twenty adults were recruited. INVOS® and O3™ probes were placed simultaneously on 1 side of forearm. After baseline measurement, the vascular occlusion test was initiated. The baseline value, rate of deoxygenation and reoxygenation, minimum and peak StO<sub>2</sub>, and time from cuff release to peak value were measured. The parameters were compared using ANOVA and Kruskal-Wallis tests. Bonferroni’s correction and Mann-Whitney pairwise comparison were used for post hoc analysis. The agreement between StO<sub>2</sub> of devices was evaluated using Bland-Altman plots. INVOS® baseline value was higher (79.7 ± 6.4%) than that of O3<sup>25:75</sup> and O3<sup>30:70</sup> (62.4 ± 6.0% and 63.7 ± 5.5%, respectively, <i>p</i> &#x3c; 0.001). The deoxygenation rate was higher with INVOS® (10.6 ± 2.1%/min) than with O3<sup>25:75</sup> and O3<sup>30:70</sup> (8.4 ± 2.2%/min, <i>p</i> = 0.006 and 7.5 ± 2.1%/min, <i>p</i> &#x3c; 0.001). The minimum and peak StO<sub>2</sub> were higher with INVOS®. No significant difference in the reoxygenation rate was found between the devices and settings. The time to reach peak after cuff deflation was faster with INVOS® (both <i>p</i> &#x3c; 0.001). Other parameters were similar. There were no differences between the different O3™ settings. There were differences in StO<sub>2</sub> measurements between the devices, and these devices should not be interchanged. Differences were not observed between O3™ device settings.


2019 ◽  
Vol 16 (11) ◽  
pp. 115602
Author(s):  
D M Kustov ◽  
A S Sharova ◽  
V I Makarov ◽  
A V Borodkin ◽  
T A Saveleva ◽  
...  

2015 ◽  
Vol 671 ◽  
pp. 356-362 ◽  
Author(s):  
Zhi Feng Chen ◽  
Yuan Quan Hong ◽  
Chang Jiang Wan ◽  
Lian Ying Zhao

A fast non-destructive method of detection of wool content in blended fabrics was studied based on Near Infrared spectroscopy technology in order to avoid the time-consuming, tedious work and the destruction of samples in the traditional inspection. 621 wool/nylon, wool/polyester and wool/nylon/polyester blended fabrics were taken as research objects. To get the wool content, we established the wool near-infrared quantitative model by partial least squares (PLS) method after analyzing the color and composition of the samples. For verifying the validity and practicability of the model, 100 samples were chosen as an independent validation set. The variance analysis shows that there is no significant difference between Near Infrared fast detection method and national standard method (GB/T2910-2009),which indicates that this method is expected to be a means of fast non-destructive detection and will have extensive application future in the field of wool content detection.


Sign in / Sign up

Export Citation Format

Share Document