Fast Non-Destructive Detection of Wool Content in Blended Fabrics Based on Near-Infrared Spectroscopy Technology

2015 ◽  
Vol 671 ◽  
pp. 356-362 ◽  
Author(s):  
Zhi Feng Chen ◽  
Yuan Quan Hong ◽  
Chang Jiang Wan ◽  
Lian Ying Zhao

A fast non-destructive method of detection of wool content in blended fabrics was studied based on Near Infrared spectroscopy technology in order to avoid the time-consuming, tedious work and the destruction of samples in the traditional inspection. 621 wool/nylon, wool/polyester and wool/nylon/polyester blended fabrics were taken as research objects. To get the wool content, we established the wool near-infrared quantitative model by partial least squares (PLS) method after analyzing the color and composition of the samples. For verifying the validity and practicability of the model, 100 samples were chosen as an independent validation set. The variance analysis shows that there is no significant difference between Near Infrared fast detection method and national standard method (GB/T2910-2009),which indicates that this method is expected to be a means of fast non-destructive detection and will have extensive application future in the field of wool content detection.

2021 ◽  
pp. 101189
Author(s):  
Alin Khaliduzzaman ◽  
Ayuko Kashimori ◽  
Tetsuhito Suzuki ◽  
Yuichi Ogawa ◽  
Naoshi Kondo

2020 ◽  
Vol 57 (6) ◽  
pp. 341-347
Author(s):  
Jaeyeon Chung ◽  
Sang-Hwan Ji ◽  
Young-Eun Jang ◽  
Eun-Hee Kim ◽  
Ji-Hyun Lee ◽  
...  

Near-infrared spectroscopy devices can measure peripheral tissue oxygen saturation (StO<sub>2</sub>). This study aims to compare StO<sub>2</sub> using INVOS® and different O3™ settings (O3<sup>25:75</sup> and O3<sup>30:70</sup>). Twenty adults were recruited. INVOS® and O3™ probes were placed simultaneously on 1 side of forearm. After baseline measurement, the vascular occlusion test was initiated. The baseline value, rate of deoxygenation and reoxygenation, minimum and peak StO<sub>2</sub>, and time from cuff release to peak value were measured. The parameters were compared using ANOVA and Kruskal-Wallis tests. Bonferroni’s correction and Mann-Whitney pairwise comparison were used for post hoc analysis. The agreement between StO<sub>2</sub> of devices was evaluated using Bland-Altman plots. INVOS® baseline value was higher (79.7 ± 6.4%) than that of O3<sup>25:75</sup> and O3<sup>30:70</sup> (62.4 ± 6.0% and 63.7 ± 5.5%, respectively, <i>p</i> &#x3c; 0.001). The deoxygenation rate was higher with INVOS® (10.6 ± 2.1%/min) than with O3<sup>25:75</sup> and O3<sup>30:70</sup> (8.4 ± 2.2%/min, <i>p</i> = 0.006 and 7.5 ± 2.1%/min, <i>p</i> &#x3c; 0.001). The minimum and peak StO<sub>2</sub> were higher with INVOS®. No significant difference in the reoxygenation rate was found between the devices and settings. The time to reach peak after cuff deflation was faster with INVOS® (both <i>p</i> &#x3c; 0.001). Other parameters were similar. There were no differences between the different O3™ settings. There were differences in StO<sub>2</sub> measurements between the devices, and these devices should not be interchanged. Differences were not observed between O3™ device settings.


2013 ◽  
Vol 807-809 ◽  
pp. 1967-1971
Author(s):  
Yan Bai ◽  
Xiao Yan Duan ◽  
Hai Yan Gong ◽  
Cai Xia Xie ◽  
Zhi Hong Chen ◽  
...  

In this paper, the content of forsythoside A and ethanol-extract were rapidly determinated by near-infrared reflectance spectroscopy (NIRS). 85 samples of Forsythiae Fructus harvested in Luoyang from July to September in 2012 were divided into a calibration set (75 samples) and a validation set (10 samples). In combination with the partical least square (PLS), the quantitative calibration models of forsythoside A and ethanol-extract were established. The correlation coefficient of cross-validation (R2) was 0.98247 and 0.97214 for forsythoside A and ethanol-extract, the root-mean-square error of calibration (RMSEC) was 0.184 and 0.570, the root-mean-square error of cross-validation (RMSECV) was 0.81736 and 0.36656. The validation set were used to evaluate the performance of the models, the root-mean-square error of prediction (RMSEP) was 0.221 and 0.518. The results indicated that it was feasible to determine the content of forsythoside A and ethanol-extract in Forsythiae Fructus by near-infrared spectroscopy.


LWT ◽  
2019 ◽  
Vol 103 ◽  
pp. 101-107 ◽  
Author(s):  
Lívia C. Carvalho ◽  
Marcondes L. Leite ◽  
Camilo L.M. Morais ◽  
Kássio M.G. Lima ◽  
Gustavo H.A. Teixeira

Sign in / Sign up

Export Citation Format

Share Document