Partial (Neighbourhood) Singleton Arc Consistency for Constraint Satisfaction Problems

2020 ◽  
Vol 174 (3-4) ◽  
pp. 311-344
Author(s):  
Richard J. Wallace

Algorithms based on singleton arc consistency (SAC) show considerable promise for improving backtrack search algorithms for constraint satisfaction problems (CSPs). The drawback is that even the most efficient of them is still comparatively expensive. Even when limited to preprocessing, they give overall improvement only when problems are quite difficult to solve with more typical procedures such as maintained arc consistency (MAC). The present work examines a form of partial SAC and neighbourhood SAC (NSAC) in which a subset of the variables in a CSP are chosen to be made SAC-consistent or neighbourhood-SAC-consistent. Such consistencies, despite their partial character, are still well-characterized in that algorithms have unique fixpoints. Heuristic strategies for choosing an effective subset of variables are described and tested, the best being choice by highest degree and a more complex strategy of choosing by constraint weight after random probing. Experimental results justify the claim that these methods can be nearly as effective as the corresponding full version of the algorithm in terms of values discarded or problems proven unsatisfiable, while significantly reducing the effort required to achieve this.

2014 ◽  
Vol 23 (04) ◽  
pp. 1460017
Author(s):  
Jinsong Guo ◽  
Hongbo Li ◽  
Zhanshan Li ◽  
Yonggang Zhang ◽  
Xianghua Jia

Maintaining local consistencies can improve the efficiencies of the search algorithms solving constraint satisfaction problems (CSPs). Comparing with arc consistency which is the most widely used local consistency, stronger local consistencies can make the search space smaller while they require higher computational cost. In this paper, we make an attempt on the compromise between the pruning ability and the computational cost. A new local consistency called singleton strong bound consistency (SSBC) and its light version, light SSBC, are proposed. The search algorithm maintaining light SSBC can outperform MAC on a considerable number of problems.


2007 ◽  
Vol 28 ◽  
pp. 107-118 ◽  
Author(s):  
H. Jia ◽  
C. Moore ◽  
D. Strain

To test incomplete search algorithms for constraint satisfaction problems such as 3-SAT, we need a source of hard, but satisfiable, benchmark instances. A simple way to do this is to choose a random truth assignment A, and then choose clauses randomly from among those satisfied by A. However, this method tends to produce easy problems, since the majority of literals point toward the "hidden'' assignment A. Last year, Achlioptas, Jia and Moore proposed a problem generator that cancels this effect by hiding both A and its complement. While the resulting formulas appear to be just as hard for DPLL algorithms as random 3-SAT formulas with no hidden assignment, they can be solved by WalkSAT in only polynomial time. Here we propose a new method to cancel the attraction to A, by choosing a clause with t > 0 literals satisfied by A with probability proportional to q^t for some q < 1. By varying q, we can generate formulas whose variables have no bias, i.e., which are equally likely to be true or false; we can even cause the formula to "deceptively'' point away from A. We present theoretical and experimental results suggesting that these formulas are exponentially hard both for DPLL algorithms and for incomplete algorithms such as WalkSAT.


Author(s):  
Marlene Arangú ◽  
Miguel Salido

A fine-grained arc-consistency algorithm for non-normalized constraint satisfaction problems Constraint programming is a powerful software technology for solving numerous real-life problems. Many of these problems can be modeled as Constraint Satisfaction Problems (CSPs) and solved using constraint programming techniques. However, solving a CSP is NP-complete so filtering techniques to reduce the search space are still necessary. Arc-consistency algorithms are widely used to prune the search space. The concept of arc-consistency is bidirectional, i.e., it must be ensured in both directions of the constraint (direct and inverse constraints). Two of the most well-known and frequently used arc-consistency algorithms for filtering CSPs are AC3 and AC4. These algorithms repeatedly carry out revisions and require support checks for identifying and deleting all unsupported values from the domains. Nevertheless, many revisions are ineffective, i.e., they cannot delete any value and consume a lot of checks and time. In this paper, we present AC4-OP, an optimized version of AC4 that manages the binary and non-normalized constraints in only one direction, storing the inverse founded supports for their later evaluation. Thus, it reduces the propagation phase avoiding unnecessary or ineffective checking. The use of AC4-OP reduces the number of constraint checks by 50% while pruning the same search space as AC4. The evaluation section shows the improvement of AC4-OP over AC4, AC6 and AC7 in random and non-normalized instances.


2001 ◽  
Vol 1 (6) ◽  
pp. 713-750 ◽  
Author(s):  
KRZYSZTOF R. APT ◽  
ERIC MONFROY

We study here a natural situation when constraint programming can be entirely reduced to rule-based programming. To this end we explain first how one can compute on constraint satisfaction problems using rules represented by simple first-order formulas. Then we consider constraint satisfaction problems that are based on predefined, explicitly given constraints. To solve them we first derive rules from these explicitly given constraints and limit the computation process to a repeated application of these rules, combined with labeling. We consider two types of rule here. The first type, that we call equality rules, leads to a new notion of local consistency, called rule consistency that turns out to be weaker than arc consistency for constraints of arbitrary arity (called hyper-arc consistency in Marriott & Stuckey (1998)). For Boolean constraints rule consistency coincides with the closure under the well-known propagation rules for Boolean constraints. The second type of rules, that we call membership rules, yields a rule-based characterization of arc consistency. To show feasibility of this rule-based approach to constraint programming, we show how both types of rules can be automatically generated, as CHR rules of Frühwirth (1995). This yields an implementation of this approach to programming by means of constraint logic programming. We illustrate the usefulness of this approach to constraint programming by discussing various examples, including Boolean constraints, two typical examples of many valued logics, constraints dealing with Waltz's language for describing polyhedral scenes, and Allen's qualitative approach to temporal logic.


1993 ◽  
Vol 02 (02) ◽  
pp. 277-306
Author(s):  
MARK W. PERLIN

RETE match for production systems and Arc Consistency (AC) filtering are two efficient AI algorithms that are designed for particular constraint satisfaction problems (CSP). Interestingly, it is possible to integrate the two within a common framework, and provide RETE with the lookahead advantages of AC. Unfortunately, the resulting quadratic dependence of AC on working memory (WM) size precludes the application of AC to RETE, since RETE responds to incremental changes in WM. Recent results in AC graph factorization, however, reduce the quadratic dependence to just linear for certain classes of problems, including RETE. In this paper, we present RETE and AC within the unified framework of Call-Graph Caching (CGC) evaluation. We describe factored arc consistency (FAC) and its use in an integrated FAC/RETE algorithm that provides RETE match with AC lookahead. We discuss our implementations, promising initial empirical results, and explore FAC/RETE’s applicability conditions and extensions. We conclude that incorporating factored AC into RETE match is an interesting and potentially useful application of arc consistency methods to the RETE CSP.


2001 ◽  
Vol 11 (5) ◽  
pp. 557-587 ◽  
Author(s):  
THOMAS NORDIN ◽  
ANDREW TOLMACH

We describe a unified, lazy, declarative framework for solving constraint satisfaction problems, an important subclass of combinatorial search problems. These problems are both practically significant and computationally hard. Finding solutions involves combining good general-purpose search algorithms with problem-specific heuristics. Conventional imperative algorithms are usually implemented and presented monolithically, which makes them hard to understand and reuse, even though new algorithms often are combinations of simpler ones. Lazy functional languages, such as Haskell, encourage modular structuring of search algorithms by separating the generation and testing of potential solutions into distinct functions communicating through an explicit, lazy intermediate data structure. But only relatively simple search algorithms have been treated this way in the past. Our framework uses a generic generation and pruning algorithm parameterized by a labeling function that annotates search trees with conflict sets. We show that many advanced imperative search algorithms, including conflict-directed backjumping, backmarking, minimal forward checking, and fail-first dynamic variable ordering, can be obtained by suitable instantiation of the labeling function. More importantly, arbitrary combinations of these algorithms can be built by simply composing their labeling functions. Our modular algorithms are as efficient as the monolithic imperative algorithms in the sense that they make the same number of consistency checks, and most of our algorithms are within a constant factor of their imperative counterparts in runtime and space usage. We believe our framework is especially well-suited for experimenting to find good combinations of algorithms for specific problems.


2008 ◽  
Vol 17 (02) ◽  
pp. 321-337 ◽  
Author(s):  
KOSTAS STERGIOU

The Quantified Constraint Satisfaction Problem (QCSP) is an extension of the CSP that can be used to model combinatorial problems containing contingency or uncertainty. It allows for universally quantified variables that can model uncertain actions and events, such as the unknown weather for a future party, or an opponent's next move in a game. Although interest in QCSPs is increasing in recent years, the development of techniques for handling QCSPs is still at an early stage. For example, although it is well known that local consistencies are of primary importance in CSPs, only arc consistency has been extended to quantified problems. In this paper we contribute towards the development of solution methods for QCSPs in two ways. First, by extending directional arc and path consistency, two popular local consistencies in constraint satisfaction, to the quantified case and proposing an algorithm that achieves these consistencies. Second, by showing how value ordering heuristics can be utilized to speed up computation in QCSPs. We study the impact of preprocessing QCSPs with value reordering and directional quantified arc and path consistency by running experiments on randomly generated problems. Results show that our preprocessing methods can significantly speed up the QCSP solving process, especially on hard instances from the phase transition region.


Sign in / Sign up

Export Citation Format

Share Document