scholarly journals Multi-objective inventory routing with uncertain demand using population-based metaheuristics

2016 ◽  
Vol 23 (3) ◽  
pp. 205-220 ◽  
Author(s):  
Zhiwei Yang ◽  
Michael Emmerich ◽  
Thomas Bäck ◽  
Joost Kok ◽  
Zhiwei Yang ◽  
...  
Author(s):  
Janga Reddy Manne

Most of the engineering design problems are intrinsically complex and difficult to solve, because of diverse solution search space, complex functions, continuous and discrete nature of decision variables, multiple objectives and hard constraints. Swarm intelligence (SI) algorithms are becoming popular in dealing with these kind of complexities. The SI algorithms being population based random search techniques, use heuristics inspired from nature to enable effective exploration of optimal solutions to complex engineering problems. The SI algorithms derived based on principles of co-operative group intelligence and collective behavior of self-organized systems. This chapter presents key principles of multi-optimization, and swarm optimization for solving multi-objective engineering design problems with illustration through few examples.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 382 ◽  
Author(s):  
Muhammad Imran ◽  
Muhammad Salman Habib ◽  
Amjad Hussain ◽  
Naveed Ahmed ◽  
Abdulrahman M. Al-Ahmari

This paper presents a multi-objective, multi-period inventory routing problem in the supply chain of perishable products under uncertain costs. In addition to traditional objectives of cost and greenhouse gas (GHG) emission minimization, a novel objective of priority index maximization has been introduced in the model. The priority index quantifies the qualitative social aspects, such as coordination, trust, behavior, and long-term relationships among the stakeholders. In a multi-echelon supply chain, the performance of distributor/retailer is affected by the performance of supplier/distributor. The priority index measures the relative performance index of each player within the supply chain. The maximization of priority index ensures the achievement of social sustainability in the supply chain. Moreover, to model cost uncertainty, a time series integrated regression fuzzy method is developed. This research comprises of three phases. In the first phase, a mixed-integer multi-objective mathematical model while considering the cost uncertainty has been formulated. In order to determine the parameters for priority index objective function, a two-phase fuzzy inference process is used and the rest of the objectives (cost and GHG) have been modeled mathematically. The second phase involves the development of solution methodology. In this phase, to solve the mathematical model, a modified interactive multi-objective fuzzy programming has been employed that incorporates experts’ preferences for objective satisfaction based on their experiences. Finally, in the third phase, a case study of the supply chain of surgical instruments is presented as an example. The results of the case provide optimal flow of products from suppliers to hospitals and the optimal sequence of the visits of different vehicle types that minimize total cost, GHG emissions, and maximizes the priority index.


Author(s):  
Mian Li

Although Genetic Algorithms (GAs) and Multi-Objective Genetic Algorithms (MOGAs) have been widely used in engineering design optimization, the important challenge still faced by researchers in using these methods is their high computational cost due to the population-based nature of these methods. For these problems it is important to devise MOGAs that can significantly reduce the number of simulation calls compared to a conventional MOGA. We present an improved kriging assisted MOGA, called Circled Kriging MOGA (CK-MOGA), in which kriging metamodels are embedded within the computation procedure of a traditional MOGA. In the proposed approach, the decision as to whether the original simulation or its kriging metamodel should be used for evaluating an individual is based on a new objective switch criterion and an adaptive metamodeling technique. The effect of the possible estimated error from the metamodel is mitigated by applying the new switch criterion. Three numerical and engineering examples with different degrees of difficulty are used to illustrate applicability of the proposed approach. The results show that, on the average, CK-MOGA outperforms both a conventional MOGA and our developed Kriging MOGA in terms of the number of simulation calls.


2014 ◽  
Vol 660 ◽  
pp. 487-491 ◽  
Author(s):  
Lavi R. Zuhal ◽  
Yohanes Bimo Dwianto ◽  
Pramudita Satria Palar

This paper presents the development of multi-objective population-based optimization method, called Non-dominated Sorting Genetic Algorithm II (NSGA-II), to optimize the aerodynamic characteristic of a low Reynolds number airfoil. The optimization is performed by changing the shape of the airfoil to obtain geometry with the best aerodynamic characteristics. The results of the study show that the developed optimization tool, coupled with modified PARSEC parameterization, has yielded optimum airfoils with better aerodynamic characteristics compared to original airfoil. Additionally, it is found that the developed method has better performance compared to similar methods found in literature.


Sign in / Sign up

Export Citation Format

Share Document