Attribute interaction aware matrix factorization method for recommendation

2021 ◽  
Vol 25 (5) ◽  
pp. 1115-1130
Author(s):  
Yongquan Wan ◽  
Lihua Zhu ◽  
Cairong Yan ◽  
Bofeng Zhang

Matrix factorization (MF) models are effective and easy to expand and are widely used in industry, such as rating prediction and item recommendation. The basic MF model is relatively simple. In practical applications, side information such as attributes or implicit feedback is often combined to improve accuracy by modifying the model and optimizing the algorithm. In this paper, we propose an attribute interaction-aware matrix factorization (AIMF) method for recommendation tasks. We partition the original rating matrix into different sub-matrices according to the attribute interactions, train each sub-matrix independently, and merge all the latent vectors to generate the final score. Since the generated sub-matrices vary in size, an adaptive regularization coefficient optimization strategy and an adaptive latent vector dimension optimization strategy are proposed for sub-matrix training, and a variety of latent vector merging methods are put forward. The method AIMF has two advantages. When the original rating matrix is particularly large, the training time complexity of the MF-based model becomes higher and the update cost of the model is also higher. In AIMF, because each sub-matrix is usually much smaller than the original rating matrix, the training time complexity is greatly reduced after using parallel computing technology. Secondly, in AIMF, it is not necessary to modify the matrix factorization model to incorporate attributes and their interactive information into the model to improve the performance. The experimental results on the two classic public datasets MovieLens 1M and MovieLens 100k show that AIMF can not only effectively improve the accuracy of recommendation, but also make full use of parallel computing technology to improve training efficiency without modifying the matrix factorization model.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yan Yu ◽  
Robin G. Qiu

Microblog that provides us a new communication and information sharing platform has been growing exponentially since it emerged just a few years ago. To microblog users, recommending followees who can serve as high quality information sources is a competitive service. To address this problem, in this paper we propose a matrix factorization model with structural regularization to improve the accuracy of followee recommendation in microblog. More specifically, we adapt the matrix factorization model in traditional item recommender systems to followee recommendation in microblog and use structural regularization to exploit structure information of social network to constrain matrix factorization model. The experimental analysis on a real-world dataset shows that our proposed model is promising.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Wen Dai ◽  
Xi Liu ◽  
Yibo Gao ◽  
Lin Chen ◽  
Jianglong Song ◽  
...  

There has been rising interest in the discovery of novel drug indications because of high costs in introducing new drugs. Many computational techniques have been proposed to detect potential drug-disease associations based on the creation of explicit profiles of drugs and diseases, while seldom research takes advantage of the immense accumulation of interaction data. In this work, we propose a matrix factorization model based on known drug-disease associations to predict novel drug indications. In addition, genomic space is also integrated into our framework. The introduction of genomic space, which includes drug-gene interactions, disease-gene interactions, and gene-gene interactions, is aimed at providing molecular biological information for prediction of drug-disease associations. The rationality lies in our belief that association between drug and disease has its evidence in the interactome network of genes. Experiments show that the integration of genomic space is indeed effective. Drugs, diseases, and genes are described with feature vectors of the same dimension, which are retrieved from the interaction data. Then a matrix factorization model is set up to quantify the association between drugs and diseases. Finally, we use the matrix factorization model to predict novel indications for drugs.


Author(s):  
Reyhani Hamedani ◽  
Irfan Ali ◽  
Jiwon Hong ◽  
Sang-Wook Kim

Trust-aware recommendation approaches are widely used to mitigate the cold-start problem in recommender systems by utilizing trust networks. In this paper, we point out the problems of existing trust-aware recommendation approaches as follows: (P1) exploiting sparse explicit trust and distrust relationships; (P2) considering a misleading assumption that a user pair having a trust/distrust relationship certainly has a similar/dissimilar preference in practice; (P3) employing the transitivity of distrust relationships. Then, we propose TrustRec, a novel approach based on the matrix factorization that provides an effective solution to each of the afore mentioned problems and incorporates all of them in a single matrix factorization model. Furthermore, TrustRec exploits only top-k most similar trustees and dissimilar distrustees of each user to improve both the computational cost and accuracy. The results of our extensive experiments demonstrate that TructRec outperforms existing approaches in terms of both effectiveness and efficiency.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Leiming Tang ◽  
Xunjie Cao ◽  
Weiyang Chen ◽  
Changbo Ye

In this paper, the low-complexity tensor completion (LTC) scheme is proposed to improve the efficiency of tensor completion. On one hand, the matrix factorization model is established for complexity reduction, which adopts the matrix factorization into the model of low-rank tensor completion. On the other hand, we introduce the smoothness by total variation regularization and framelet regularization to guarantee the completion performance. Accordingly, given the proposed smooth matrix factorization (SMF) model, an alternating direction method of multiple- (ADMM-) based solution is further proposed to realize the efficient and effective tensor completion. Additionally, we employ a novel tensor initialization approach to accelerate convergence speed. Finally, simulation results are presented to confirm the system gain of the proposed LTC scheme in both efficiency and effectiveness.


2021 ◽  
Vol 5 (4) ◽  
pp. 506
Author(s):  
Janny Eka Prayogo ◽  
Aries Suharso ◽  
Adhi Rizal

Rating is a form of assessment of the likes or dislikes of a user or customer for an item. Where the higher the rating number given, the item is preferred by customers or users. In the recommendation engine, a set of ratings can be predicted and used as an object to generate a recommendation by the Collaborative Filtering method. In the Collaborative Filtering method, there is a rating prediction model, namely the Matrix Factorization and K-Nearest Neighbor models. This study analyzes the comparison of the two prediction models based on the value of Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and the prediction results generated using the movielens film rating dataset. From the analysis and testing results, it was found that MAE = 0.6371 and RMSE = 0.8305 for the Matrix Factorization model, while MAE = 0.6742 and RMSE = 0.8863 for the K-Nearest Neighbor model. The best model is Matrix Factorization because the MAE and RMSE values are lower than the K-Nearest Neighbor model and have the closest predicted rating results from the original rating value.


Author(s):  
K Sobha Rani

Collaborative filtering suffers from the problems of data sparsity and cold start, which dramatically degrade recommendation performance. To help resolve these issues, we propose TrustSVD, a trust-based matrix factorization technique. By analyzing the social trust data from four real-world data sets, we conclude that not only the explicit but also the implicit influence of both ratings and trust should be taken into consideration in a recommendation model. Hence, we build on top of a state-of-the-art recommendation algorithm SVD++ which inherently involves the explicit and implicit influence of rated items, by further incorporating both the explicit and implicit influence of trusted users on the prediction of items for an active user. To our knowledge, the work reported is the first to extend SVD++ with social trust information. Experimental results on the four data sets demonstrate that our approach TrustSVD achieves better accuracy than other ten counterparts, and can better handle the concerned issues.


Author(s):  
V.P. Shchedryk ◽  

The book is devoted to investigation of arithmetic of the matrix rings over certain classes of commutative finitely generated principal ideals do- mains. We mainly concentrate on constructing of the matrix factorization theory. We reveal a close relationship between the matrix factorization and specific properties of subgroups of the complete linear group and the special normal form of matrices with respect to unilateral equivalence. The properties of matrices over rings of stable range 1.5 are thoroughly studied. The book is intended for experts in the ring theory and linear algebra, senior and post-graduate students.


Sign in / Sign up

Export Citation Format

Share Document