Time-series data dynamic density clustering

2021 ◽  
Vol 25 (6) ◽  
pp. 1487-1506
Author(s):  
Hao Chen ◽  
Yu Xia ◽  
Yuekai Pan ◽  
Qing Yang

In many clustering problems, the whole data is not always static. Over time, part of it is likely to be changed, such as updated, erased, etc. Suffer this effect, the timeline can be divided into multiple time segments. And, the data at each time slice is static. Then, the data along the timeline shows a series of dynamic intermediate states. The union set of data from all time slices is called the time-series data. Obviously, the traditional clustering process does not apply directly to the time-series data. Meanwhile, repeating the clustering process at every time slices costs tremendous. In this paper, we analyze the transition rules of the data set and cluster structure when the time slice shifts to the next. We find there is a distinct correlation of data set and succession of cluster structure between two adjacent ones, which means we can use it to reduce the cost of the whole clustering process. Inspired by it, we propose a dynamic density clustering method (DDC) for time-series data. In the simulations, we choose 6 representative problems to construct the time-series data for testing DDC. The results show DDC can get high accuracy results for all 6 problems while reducing the overall cost markedly.

AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 48-70
Author(s):  
Wei Ming Tan ◽  
T. Hui Teo

Prognostic techniques attempt to predict the Remaining Useful Life (RUL) of a subsystem or a component. Such techniques often use sensor data which are periodically measured and recorded into a time series data set. Such multivariate data sets form complex and non-linear inter-dependencies through recorded time steps and between sensors. Many current existing algorithms for prognostic purposes starts to explore Deep Neural Network (DNN) and its effectiveness in the field. Although Deep Learning (DL) techniques outperform the traditional prognostic algorithms, the networks are generally complex to deploy or train. This paper proposes a Multi-variable Time Series (MTS) focused approach to prognostics that implements a lightweight Convolutional Neural Network (CNN) with attention mechanism. The convolution filters work to extract the abstract temporal patterns from the multiple time series, while the attention mechanisms review the information across the time axis and select the relevant information. The results suggest that the proposed method not only produces a superior accuracy of RUL estimation but it also trains many folds faster than the reported works. The superiority of deploying the network is also demonstrated on a lightweight hardware platform by not just being much compact, but also more efficient for the resource restricted environment.


2019 ◽  
Author(s):  
Srishti Mishra ◽  
Zohair Shafi ◽  
Santanu Pathak

Data driven decision making is becoming increasingly an important aspect for successful business execution. More and more organizations are moving towards taking informed decisions based on the data that they are generating. Most of this data are in temporal format - time series data. Effective analysis across time series data sets, in an efficient and quick manner is a challenge. The most interesting and valuable part of such analysis is to generate insights on correlation and causation across multiple time series data sets. This paper looks at methods that can be used to analyze such data sets and gain useful insights from it, primarily in the form of correlation and causation analysis. This paper focuses on two methods for doing so, Two Sample Test with Dynamic Time Warping and Hierarchical Clustering and looks at how the results returned from both can be used to gain a better understanding of the data. Moreover, the methods used are meant to work with any data set, regardless of the subject domain and idiosyncrasies of the data set, primarily, a data agnostic approach.


Author(s):  
Srishti Mishra ◽  
Zohair Shafi ◽  
Santanu Pathak

Data driven decision making is becoming increasingly an important aspect for successful business execution. More and more organizations are moving towards taking informed decisions based on the data that they are generating. Most of this data are in temporal format - time series data. Effective analysis across time series data sets, in an efficient and quick manner is a challenge. The most interesting and valuable part of such analysis is to generate insights on correlation and causation across multiple time series data sets. This paper looks at methods that can be used to analyze such data sets and gain useful insights from it, primarily in the form of correlation and causation analysis. This paper focuses on two methods for doing so, Two Sample Test with Dynamic Time Warping and Hierarchical Clustering and looks at how the results returned from both can be used to gain a better understanding of the data. Moreover, the methods used are meant to work with any data set, regardless of the subject domain and idiosyncrasies of the data set, primarily, a data agnostic approach.


MAUSAM ◽  
2021 ◽  
Vol 68 (2) ◽  
pp. 349-356
Author(s):  
J. HAZARIKA ◽  
B. PATHAK ◽  
A. N. PATOWARY

Perceptive the rainfall pattern is tough for the solution of several regional environmental issues of water resources management, with implications for agriculture, climate change, and natural calamity such as floods and droughts. Statistical computing, modeling and forecasting data are key instruments for studying these patterns. The study of time series analysis and forecasting has become a major tool in different applications in hydrology and environmental fields. Among the most effective approaches for analyzing time series data is the ARIMA (Autoregressive Integrated Moving Average) model introduced by Box and Jenkins. In this study, an attempt has been made to use Box-Jenkins methodology to build ARIMA model for monthly rainfall data taken from Dibrugarh for the period of 1980- 2014 with a total of 420 points.  We investigated and found that ARIMA (0, 0, 0) (0, 1, 1)12 model is suitable for the given data set. As such this model can be used to forecast the pattern of monthly rainfall for the upcoming years, which can help the decision makers to establish priorities in terms of agricultural, flood, water demand management etc.  


Author(s):  
T. Warren Liao

In this chapter, we present genetic algorithm (GA) based methods developed for clustering univariate time series with equal or unequal length as an exploratory step of data mining. These methods basically implement the k-medoids algorithm. Each chromosome encodes in binary the data objects serving as the k-medoids. To compare their performance, both fixed-parameter and adaptive GAs were used. We first employed the synthetic control chart data set to investigate the performance of three fitness functions, two distance measures, and other GA parameters such as population size, crossover rate, and mutation rate. Two more sets of time series with or without known number of clusters were also experimented: one is the cylinder-bell-funnel data and the other is the novel battle simulation data. The clustering results are presented and discussed.


2004 ◽  
Vol 91 (3-4) ◽  
pp. 332-344 ◽  
Author(s):  
Jin Chen ◽  
Per. Jönsson ◽  
Masayuki Tamura ◽  
Zhihui Gu ◽  
Bunkei Matsushita ◽  
...  

2005 ◽  
Vol 33 (2) ◽  
pp. 159-172 ◽  
Author(s):  
Sarika Mehra ◽  
Wei Lian ◽  
Karthik P. Jayapal ◽  
Salim P. Charaniya ◽  
David H. Sherman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document