Effect of knee muscle fatigue and lactic acid accumulation on balance in healthy subjects

2006 ◽  
Vol 14 (4) ◽  
pp. 301-306 ◽  
Author(s):  
Ozgur Surenkok ◽  
Ayşe Kin Isler ◽  
Aydan Aytar ◽  
Zuhal Gultekin ◽  
Mahmut N. Akman
2008 ◽  
Vol 17 (4) ◽  
pp. 380-386 ◽  
Author(s):  
Ozgur Surenkok ◽  
Ayse Kin-Isler ◽  
Aydan Aytar ◽  
Zuhal Gültekin

Objective:This study sought to determine the effects of trunk-muscle fatigue and blood lactic acid elevation on static and dynamic balance.Intervention:Fatigue was induced by an isokinetic protocol, and static and dynamic balance were assessed during bilateral stance using a Kinesthetic Ability Trainer. Subjects participated in a fatigue protocol in which continuous concentric movements at 60°/s were performed until the torque output for both trunk flexion and extension dropped below 25% of the calculated peak torque for 3 consecutive movements.Measures:Before and immediately after the fatigue protocol, blood lactic acid measurements and static- and dynamic-balance measurements were recorded.Results:An increase in lactic acid levels was detected in all subjects. According to a dependent-samples t test, significant differences in balance and lactic acid values were found after the fatigue protocol. There was no correlation between lactic acid accumulation (change between prefatigue and postfatigue levels) and balance-score differences.Conclusion:Trunk-muscle fatigue has an adverse effect on static and dynamic balance.


Physiology ◽  
2002 ◽  
Vol 17 (1) ◽  
pp. 17-21 ◽  
Author(s):  
Håkan Westerblad ◽  
David G. Allen ◽  
Jan Lännergren

Intracellular acidosis due mainly to lactic acid accumulation has been regarded as the most important cause of skeletal muscle fatigue. Recent studies on mammalian muscle, however, show little direct effect of acidosis on muscle function at physiological temperatures. Instead, inorganic phosphate, which increases during fatigue due to breakdown of creatine phosphate, appears to be a major cause of muscle fatigue.


2021 ◽  
Vol 9 (6) ◽  
pp. 1225
Author(s):  
Shanshan Zhao ◽  
Fengyuan Yang ◽  
Yuan Wang ◽  
Xiaomiao Fan ◽  
Changsong Feng ◽  
...  

The aim of this study was to gain deeper insights into the dynamics of fermentation parameters and the bacterial community during the ensiling of high-moisture alfalfa. A commercial lactic acid bacteria (YX) inoculant was used as an additive. After 15 and 30 days of ensiling, the control silage (CK) exhibited a high pH and a high concentration of ammoniacal nitrogen (NH3-N); Enterobacter and Hafnia-Obesumbacterium were the dominant genera. At 60 d, the pH value and the concentration of NH3-N in CK silage increased compared with 15 and 30 d, propionic acid and butyric acid (BA) were detected, and Garciella had the highest abundance in the bacterial community. Compared with CK silage, inoculation of YX significantly promoted lactic acid and acetic acid accumulation and reduced pH and BA formation, did not significantly reduce the concentration of NH3-N except at 60 d, and significantly promoted the abundance of Lactobacillus and decreased the abundance of Garciella and Anaerosporobacter, but did not significantly inhibit the growth of Enterobacter and Hafnia-Obesumbacterium. In conclusion, high-moisture alfalfa naturally ensiled is prone to rot. Adding YX can delay the process of silage spoilage by inhibiting the growth of undesirable microorganisms to a certain extent.


2020 ◽  
Vol 35 (Supplement_3) ◽  
Author(s):  
Miriam Zacchia ◽  
Emanuela Marchese ◽  
Marianna Caterino ◽  
Margherita Ruoppolo ◽  
Giovambattista Capasso

Abstract Background and Aims Bardet Biedl Syndrome (BBS) is a rare genetic disorder characterized by a wide range of organ dysfunction, including kidney disease. The severity of renal dysfunction is highly variable in this setting, ranging from tubular defects to the end stage renal disease, with poor genotype-phenotype correlation. Proteomics and metabolomics are powerful tools able to contribute to the better understanding of molecular basis of disease conditions. Our previous studies demonstrated that the urinary proteomic pattern of BBS patients differed from that of healthy subjects, with a set of deregulated proteins including cell adhesion and extracellular matrix organization proteins (1). The present study aims to characterize urine metabolomic profile of BBS patients, in order to identify both 1) potential disease biomarkers and 2) aberrant metabolic pathways underlying renal disease Method To this end, in the pilot study urine samples have been collected from 14 adult BBS patients and have been compared with healthy volunteers, using an untargeted strategy. In the confirmation study, 24 BBS patients with wide range of kidney dysfunction have been enrolled, and additional control groups, besides healthy subjects, were included: 1) age-gender-matched chronic kidney disease patients by other causes and 2) obese individuals. Results Several metabolites were de-regulated in BBS patients compared with normal subjects (lactic acid, glycolic acid,3-Hydroxypropionic acid, pyruvic acid, 3-hydroxyisobutyric acid, 2-ethyl-3-hydroxy-propionic acid, succinic acid, fumaric acid, erythropentonic acid, 2-hydroxyglutaric acid, 4-hydroxyphenyllactic acid, 3,4-pyridinedicarboxylic acid, retinoic acid, 4-hydroxyphenylacetic acid, palmitic acid, 9-Hexadecenoic acid, oleic acid and 9-Octadecenoic acid). The clusterization performed by MetaboAnalyst tool, revealed a possible deregulation of different metabolic pathways, including glycolysis, TCA cycle, pyruvate metabolism, lipids biosynthesis and glutamate metabolism (p-value <0.01) (figure 1); some of these pathways were described as de-regulated in other ciliopathies (2). In the confirmation study (on-going studies) some metabolites, including lactic acid and intermediates of Krebs cycle, correlated with kidney dysfunction only in the BBS group. Conclusion These findings suggest that urine metabolomic fingerprint of BBS patients is different from that of healthy subjects and indicate a possible deregulation of several metabolic pathways; some urinary molecules correlated with kidney dysfunction only in BBS patients, suggesting the specificity of these results.


1957 ◽  
Vol 10 (1) ◽  
pp. 51-55 ◽  
Author(s):  
J. Gordon Wells ◽  
Bruno Balke ◽  
Donald D. Van Fossan

Author(s):  
Jean M Hiebert ◽  
Don L Hoover ◽  
Michael A Best ◽  
Ashlie B Black ◽  
Ryan K Hruska ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document