Source Analysis of Spontaneous Magnetoencephalograpic Activity in Healthy Aging and Mild Cognitive Impairment: Influence of Apolipoprotein E Polymorphism

2014 ◽  
Vol 43 (1) ◽  
pp. 259-273 ◽  
Author(s):  
Pablo Cuesta ◽  
Ana Barabash ◽  
Sara Aurtenetxe ◽  
Pilar Garcés ◽  
María Eugenia López ◽  
...  
2008 ◽  
Vol 26 (4) ◽  
pp. 300-305 ◽  
Author(s):  
Philipp A. Thomann ◽  
Ann-Sophie Roth ◽  
Vasco Dos Santos ◽  
Pablo Toro ◽  
Marco Essig ◽  
...  

2008 ◽  
Vol 4 ◽  
pp. T396-T396
Author(s):  
Philipp A. Thomann ◽  
Pablo Toro ◽  
Vasco Dos Santos ◽  
Marco Essig ◽  
Johannes Schröder

2021 ◽  
pp. 1-15
Author(s):  
Sung Hoon Kang ◽  
Bo Kyoung Cheon ◽  
Ji-Sun Kim ◽  
Hyemin Jang ◽  
Hee Jin Kim ◽  
...  

Background: Amyloid (Aβ) evaluation in amnestic mild cognitive impairment (aMCI) patients is important for predicting conversion to Alzheimer’s disease. However, Aβ evaluation through amyloid positron emission tomography (PET) is limited due to high cost and safety issues. Objective: We therefore aimed to develop and validate prediction models of Aβ positivity for aMCI using optimal interpretable machine learning (ML) approaches utilizing multimodal markers. Methods: We recruited 529 aMCI patients from multiple centers who underwent Aβ PET. We trained ML algorithms using a training cohort (324 aMCI from Samsung medical center) with two-phase modelling: model 1 included age, gender, education, diabetes, hypertension, apolipoprotein E genotype, and neuropsychological test scores; model 2 included the same variables as model 1 with additional MRI features. We used four-fold cross-validation during the modelling and evaluated the models on an external validation cohort (187 aMCI from the other centers). Results: Model 1 showed good accuracy (area under the receiver operating characteristic curve [AUROC] 0.837) in cross-validation, and fair accuracy (AUROC 0.765) in external validation. Model 2 led to improvement in the prediction performance with good accuracy (AUROC 0.892) in cross validation compared to model 1. Apolipoprotein E genotype, delayed recall task scores, and interaction between cortical thickness in the temporal region and hippocampal volume were the most important predictors of Aβ positivity. Conclusion: Our results suggest that ML models are effective in predicting Aβ positivity at the individual level and could help the biomarker-guided diagnosis of prodromal AD.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yumei Wang ◽  
Xiaochuan Zhao ◽  
Shunjiang Xu ◽  
Lulu Yu ◽  
Lan Wang ◽  
...  

Most patients with mild cognitive impairment (MCI) are thought to be in an early stage of Alzheimer’s disease (AD). Resting-state functional magnetic resonance imaging reflects spontaneous brain activity and/or the endogenous/background neurophysiological process of the human brain. Regional homogeneity (ReHo) rapidly maps regional brain activity across the whole brain. In the present study, we used the ReHo index to explore whole brain spontaneous activity pattern in MCI. Our results showed that MCI subjects displayed an increased ReHo index in the paracentral lobe, precuneus, and postcentral and a decreased ReHo index in the medial temporal gyrus and hippocampus. Impairments in the medial temporal gyrus and hippocampus may serve as important markers distinguishing MCI from healthy aging. Moreover, the increased ReHo index observed in the postcentral and paracentral lobes might indicate compensation for the cognitive function losses in individuals with MCI.


2007 ◽  
Vol 64 (9) ◽  
pp. 1306 ◽  
Author(s):  
Richard J. Caselli ◽  
Eric M. Reiman ◽  
Dona E. C. Locke ◽  
Michael L. Hutton ◽  
Joseph G. Hentz ◽  
...  

2019 ◽  
Author(s):  
FR Farina ◽  
DD Emek-Savaş ◽  
L Rueda-Delgado ◽  
R Boyle ◽  
H Kiiski ◽  
...  

AbstractAlzheimer’s disease (AD) is a neurodegenerative disorder characterised by severe cognitive decline and loss of autonomy. AD is the leading cause of dementia. AD is preceded by mild cognitive impairment (MCI). By 2050, 68% of new dementia cases will occur in low- and middle-income countries. In the absence of objective biomarkers, psychological assessments are typically used to diagnose MCI and AD. However, these require specialist training and rely on subjective judgements. The need for low-cost, accessible and objective tools to aid AD and MCI diagnosis is therefore crucial. Electroencephalography (EEG) has potential as one such tool: it is relatively inexpensive (cf. magnetic resonance imaging; MRI) and is portable. In this study, we collected resting state EEG, structural MRI and rich neuropsychological data from older adults (55+ years) with AD, with MCI and from healthy controls (n~60 per group). Our goal was to evaluate the utility of EEG, relative to MRI, for the classification of MCI and AD. We also assessed the performance of combined EEG and behavioural (Mini-Mental State Examination; MMSE) and structural MRI classification models. Resting state EEG classified AD and HC participants with moderate accuracy (AROC=0.76), with lower accuracy when distinguishing MCI from HC participants (AROC=0.67). The addition of EEG data to MMSE scores had no additional value compared to MMSE alone. Structural MRI out-performed EEG (AD vs HC, AD vs MCI: AROCs=1.00; HC vs MCI: AROC=0.73). Resting state EEG does not appear to be a suitable tool for classifying AD. However, EEG classification accuracy was comparable to structural MRI when distinguishing MCI from healthy aging, although neither were sufficiently accurate to have clinical utility. This is the first direct comparison of EEG and MRI as classification tools in AD and MCI participants.


Sign in / Sign up

Export Citation Format

Share Document