Association between Mid-Regional Proadrenomedullin Levels and Progression of Deep White Matter Lesions in the Brain Accompanying Cognitive Decline

2017 ◽  
Vol 56 (4) ◽  
pp. 1253-1262 ◽  
Author(s):  
Nagato Kuriyama ◽  
Masafumi Ihara ◽  
Toshiki Mizuno ◽  
Etsuko Ozaki ◽  
Daisuke Matsui ◽  
...  
2017 ◽  
Vol 61 (1) ◽  
pp. 145-155 ◽  
Author(s):  
Nagato Kuriyama ◽  
Etsuko Ozaki ◽  
Toshiki Mizuno ◽  
Masafumi Ihara ◽  
Shigeto Mizuno ◽  
...  

2010 ◽  
Vol 4 (4) ◽  
pp. 159
Author(s):  
C. Collin ◽  
M. Revera ◽  
B. Mazoyer ◽  
S. Laurent ◽  
C. Tzourio ◽  
...  

Stroke ◽  
2013 ◽  
Vol 44 (suppl_1) ◽  
Author(s):  
Daiki Takano ◽  
Takashi Yamazaki ◽  
Tetsuya Maeda ◽  
Yuichi Satoh ◽  
Yasuko Ikeda ◽  
...  

[Introduction] White matter hyperintensities (WMH) are considered manifestation of arteriosclerotic small vessel disease and WMH burden increases risk of ischemic stroke and cognitive decline. There are only a few evidences concerning the relationship between polyunsaturated fatty acids (PUFA) and WMH. The present study was designed to elucidate the association between WMH and PUFA profile including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and arachidonic acid (AA) in patients with Alzheimer’s disease (AD). [Methods] The present study was based on 119 patients who were diagnosed as having a probable AD according to the NINCDS-ADRDA criteria. Their mean age was 78.3 years old. All subjects underwent neuropsychological evaluation including mini mental state exam (MMSE) and 1.5-Tesla MRI. Fasting blood samples were also collected for the PUFA measurements. We measured the ratio of serum EPA, DHA and AA concentration to the total PUFA concentration. The WMH were evaluated on T2-weight images and classified into periventricular hyperintensity (PVH) and deep white matter hyperintensity (DWMH). The severity of WMH was graded 5 categories. We investigated the relationship between WMH and PUFA profiles. [Results] The EPA ratio correlated negatively with both PVH (rs=-0.2036, p=0.0264) and DWMH grade (rs=-0.3155, p=0.0005). It remained still significant after adjustment for age, sex, statins use, antithrombotics use, mean blood pressure and presence of hypertension (standardized partial regression coefficient(β)=-0.2516, p=0.0122 for PVH, β=-0.3598, p=0.0001 for DWMH). Neither DHA nor AA ratio correlated with DWMH or PVH grade. The EPA ratio but not DHA or AA ratio correlated positively with total MMSE score (rs=0.2310, p=0.0115). [Conclusions] Our data revealed that the serum EPA was protective against WMH as well as cognitive decline in AD patients. Pathophysiology underlying WMH is complex and the possible mechanisms involved in the pathogenesis of WMH encompass incomplete brain ischemia, increased permeability of blood-brain barrier, and inflammation responses. The relationship between serum EPA and WMH can be partly explained by those anti-ischemic and anti-arteriosclerotic effects of EPA.


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Tracy d’Arbeloff ◽  
Maxwell L Elliott ◽  
Annchen R Knodt ◽  
Tracy R Melzer ◽  
Ross Keenan ◽  
...  

Abstract White matter hyperintensities proliferate as the brain ages and are associated with increased risk for cognitive decline as well as Alzheimer’s disease and related dementias. As such, white matter hyperintensities have been targeted as a surrogate biomarker in intervention trials with older adults. However, it is unclear at what stage of aging white matter hyperintensities begin to relate to cognition and if they may be a viable target for early prevention. In the Dunedin Study, a population-representative cohort followed since birth, we measured white matter hyperintensities in 843 45-year-old participants using T2-weighted magnetic resonance imaging and we assessed cognitive decline from childhood to midlife. We found that white matter hyperintensities were common at age 45 and that white matter hyperintensity volume was modestly associated with both lower childhood (ß = −0.08, P = 0.013) and adult IQ (ß=−0.15, P < 0.001). Moreover, white matter hyperintensity volume was associated with greater cognitive decline from childhood to midlife (ß=−0.09, P < 0.001). Our results demonstrate that a link between white matter hyperintensities and early signs of cognitive decline is detectable decades before clinical symptoms of dementia emerge. Thus, white matter hyperintensities may be a useful surrogate biomarker for identifying individuals in midlife at risk for future accelerated cognitive decline and selecting participants for dementia prevention trials.


1999 ◽  
Vol 66 (1) ◽  
pp. 100-103 ◽  
Author(s):  
H Yao ◽  
T Yuzuriha ◽  
H Koga ◽  
K Fukuda ◽  
K Endo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document