Effect of Memantine Treatment and Combination with Vitamin D Supplementation on Body Composition in the APP/PS1 Mouse Model of Alzheimer’s Disease Following Chronic Vitamin D Deficiency

2021 ◽  
pp. 1-14
Author(s):  
Dickson Wong ◽  
Dana N. Broberg ◽  
Jagroop Doad ◽  
Joseph U. Umoh ◽  
Miranda Bellyou ◽  
...  

Background: Vitamin D deficiency and altered body composition are common in Alzheimer’s disease (AD). Memantine with vitamin D supplementation can protect cortical axons against amyloid-β exposure and glutamate toxicity. Objective: To study the effects of vitamin D deprivation and subsequent treatment with memantine and vitamin D enrichment on whole-body composition using a mouse model of AD. Methods: Male APPswe/PS1dE9 mice were divided into four groups at 2.5 months of age: the control group (n = 14) was fed a standard diet throughout; the remaining mice were started on a vitamin D-deficient diet at month 6. The vitamin D-deficient group (n = 14) remained on the vitamin D-deficient diet for the rest of the study. Of the remaining two groups, one had memantine (n = 14), while the other had both memantine and 10 IU/g vitamin D (n = 14), added to their diet at month 9. Serum 25(OH)D levels measured at months 6, 9, 12, and 15 confirmed vitamin D levels were lower in mice on vitamin D-deficient diets and higher in the vitamin D-supplemented mice. Micro-computed tomography was performed at month 15 to determine whole-body composition. Results: In mice deprived of vitamin D, memantine increased bone mineral content (8.7% increase, p <  0.01) and absolute skeletal tissue mass (9.3% increase, p <  0.05) and volume (9.2% increase, p <  0.05) relative to controls. This was not observed when memantine treatment was combined with vitamin D enrichment. Conclusion: Combination treatment of vitamin D and memantine had no negative effects on body composition. Future studies should clarify whether vitamin D status impacts the effects of memantine treatment on bone physiology in people with AD.

2021 ◽  
Author(s):  
Rai-Hua Lai ◽  
Yueh-Ying Hsu ◽  
Feng-Shiun Shie ◽  
Mei-Hsin Chen ◽  
Jyh-Lyh Juang

Vitamin D is an important hormonal molecule, which exerts genomic and non-genomic actions in maintaining brain development and adult brain health. Many epidemiological studies have associated vitamin D deficiency with Alzheimer's disease (AD). Nevertheless, the underlying signaling pathway through which this occurs remains to be characterized. We were intrigued to find that although vitamin D levels are significantly low in AD patients, their hippocampal vitamin D receptor (VDR) levels are inversely increased in the cytosol of the brain cells, and colocalized with Aβ plaques, gliosis and autophagosomes, suggesting that a non-genomic form of VDR is implicated in AD. Mechanistically, Aβ induces the conversion of nuclear heterodimer of VDR/RXR heterodimer into a cytoplasmic VDR/p53 heterodimer. The cytosolic VDR/p53 complex mediates the Aβ induced autophagic apoptosis. Reduction of p53 activity in AD mice reverses the VDR/RXR formation and rescues AD brain pathologies and cognitive impairment. In line with the impaired genomic VDR pathway, the transgenic AD mice fed a vitamin D sufficient diet exhibit lower plasma vitamin D levels since early disease phases, raising the possibility that vitamin D deficiency may actually be an early manifestation of AD. Despite the deficiency of vitamin D in AD mice, vitamin D supplementation not only has no benefit but lead to exacerbated Aβ depositions and cognitive impairment. Together, these data indicate that the impaired genomic vitamin D pathway links Aβ to induce autophagic apoptosis, and suggest that VDR/p53 pathway could be targeted for the treatment of AD.


2020 ◽  
Vol 58 (1) ◽  
pp. 204-216
Author(s):  
Martina Stazi ◽  
Oliver Wirths

AbstractMemantine, a non-competitive NMDA receptor antagonist possessing neuroprotective properties, belongs to the small group of drugs which have been approved for the treatment of Alzheimer’s disease (AD). While several preclinical studies employing different transgenic AD mouse models have described beneficial effects with regard to rescued behavioral deficits or reduced amyloid plaque pathology, it is largely unknown whether memantine might have beneficial effects on neurodegeneration. In the current study, we assessed whether memantine treatment has an impact on hippocampal neuron loss and associated behavioral deficits in the Tg4-42 mouse model of AD. We demonstrate that a chronic oral memantine treatment for 4 months diminishes hippocampal CA1 neuron loss and rescues learning and memory performance in different behavioral paradigms, such as Morris water maze or a novel object recognition task. Cognitive benefits of chronic memantine treatment were accompanied by an amelioration of impaired adult hippocampal neurogenesis. Taken together, our results demonstrate that memantine successfully counteracts pathological alterations in a preclinical mouse model of AD.


2013 ◽  
Vol 17 (4) ◽  
pp. 172-177 ◽  
Author(s):  
Mohsen Taghizadeh ◽  
Sayyed Alireza Talaei ◽  
Abolghasem Djazayeri ◽  
Mahmoud Salami

2021 ◽  
Author(s):  
Parmi Patel ◽  
Jigna Samir Shah

Abstract Purpose: A multifaceted treatment approach can be effective for Alzheimer's disease (AD). However, currently, it involves only symptomatic treatment with cholinergic drugs. Beneficial effects of high vitamin D levels or its intake in the prevention and treatment of cognitive disorders have been reported. Thus, the present study examined the preventive effect of vitamin D supplementation on AD progression and evaluated its impact on the accumulation or degradation of Aβ plaques. Methods: A single intraperitoneal injection of scopolamine was used to induce AD in rats. Treatment of vitamin D was provided for 21 days after the injection. Various behavioral parameters like learning, spatial memory and exploratory behavior, biochemical alterations in the brain homogenate and histology of the hippocampus were investigated. Results: Our results indicated that scopolamine-induced rats depicted cognitive deficits with high Aβ levels and hyperphosphorylated tau proteins in the brain tissue, while vitamin D supplementation could significantly improve the cognitive status and lower these protein levels. These results were supported by the histopathological and immunohistochemical staining of the hippocampal brain region. Furthermore, mechanistic analysis depicted that vitamin D supplementation improved the Aβ protein clearance by increasing the neprilysin levels. It also reduced the accumulation of Aβ plaques by lowering neuroinflammation as well as oxidative stress. Conclusion: The present findings indicate that vitamin D supplementation can delay AD progression by an increase in Aβ plaques degradation or reducing inflammation and oxidative stress.


2018 ◽  
Vol 21 (9) ◽  
pp. 841-848 ◽  
Author(s):  
Alice Barros Câmara ◽  
Iara Dantas de Souza ◽  
Rodrigo Juliani Siqueira Dalmolin

Sign in / Sign up

Export Citation Format

Share Document