Alzheimer’s Disease: A Decreased Cerebral Blood Flow to Critical Intraneuronal Elements is the Cause

2021 ◽  
pp. 1-4
Author(s):  
Harry S. Goldsmith

Normally, an adequate cerebral blood flow arrives at individual cerebral neurons in which the blood flow augments activity of intraneuronal mitochondria, which is the source of intraneuronal ATP, the energy source of cerebral neurons. With a decrease in cerebral blood flow that can occur as a function of normal aging phenomena, less blood results in decreased mitochondria, decreased ATP, and a decrease in neuronal activity, which can eventually lead to Alzheimer’s disease. It has been found that placement of the omentum directly on an Alzheimer’s disease brain can lead to improved cognitive function.

2021 ◽  
pp. 1-9
Author(s):  
Aldo Camargo ◽  
Ze Wang ◽  

Background: Cross-sectional studies have shown lower cerebral blood flow (CBF) in Alzheimer’s disease (AD), but longitudinal CBF changes in AD are still unknown. Objective: To reveal the longitudinal CBF changes in normal control (NC) and the AD continuum using arterial spin labeling perfusion magnetic resonance imaging (ASL MRI). Methods: CBF was calculated from two longitudinal ASL scans acquired 2.22±1.43 years apart from 140 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). At the baseline scan, the cohort contained 41 NC, 74 mild cognitive impairment patients (MCI), and 25 AD patients. 21 NC converted into MCI and 17 MCI converted into AD at the follow-up. Longitudinal CBF changes were assessed using paired-t test for non-converters and converters separately at each voxel and in the meta-ROI. Age and sex were used as covariates. Results: CBF reductions were observed in all subjects. Stable NC (n = 20) showed CBF reduction in the hippocampus and precuneus. Stable MCI patients (n = 57) showed spatially more extended CBF reduction patterns in hippocampus, middle temporal lobe, ventral striatum, prefrontal cortex, and cerebellum. NC-MCI converters showed CBF reduction in hippocampus and cerebellum and CBF increase in caudate. MCI-AD converters showed CBF reduction in hippocampus and prefrontal cortex. CBF changes were not related with longitudinal neurocognitive changes. Conclusion: Normal aging and AD continuum showed common longitudinal CBF reductions in hippocampus independent of disease and its conversion. Disease conversion independent longitudinal CBF reductions escalated in MCI subjects.


2015 ◽  
Vol 12 (10) ◽  
pp. 914-922 ◽  
Author(s):  
Maximilian Wiesmann ◽  
Carmen Capone ◽  
Valerio Zerbi ◽  
Laura Mellendijk ◽  
Arend Heerschap ◽  
...  

2010 ◽  
Vol 30 (11) ◽  
pp. 1883-1889 ◽  
Author(s):  
Allyson R Zazulia ◽  
Tom O Videen ◽  
John C Morris ◽  
William J Powers

Studies in transgenic mice overexpressing amyloid precursor protein (APP) demonstrate impaired autoregulation of cerebral blood flow (CBF) to changes in arterial pressure and suggest that cerebrovascular dysfunction may be critically important in the development of pathological Alzheimer's disease (AD). Given the relevance of such a finding for guiding hypertension treatment in the elderly, we assessed autoregulation in individuals with AD. Twenty persons aged 75±6 years with very mild or mild symptomatic AD (Clinical Dementia Rating 0.5 or 1.0) underwent 15O-positron emission tomography (PET) CBF measurements before and after mean arterial pressure (MAP) was lowered from 107±13 to 92±9 mm Hg with intravenous nicardipine; 11C-PIB-PET imaging and magnetic resonance imaging (MRI) were also obtained. There were no significant differences in mean CBF before and after MAP reduction in the bilateral hemispheres (−0.9±5.2 mL per 100 g per minute, P=0.4, 95% confidence interval (CI)=−3.4 to 1.5), cortical borderzones (−1.9±5.0 mL per 100 g per minute, P=0.10, 95% CI=−4.3 to 0.4), regions of T2W-MRI-defined leukoaraiosis (−0.3±4.4 mL per 100 g per minute, P=0.85, 95% CI=−3.3 to 3.9), or regions of peak 11C-PIB uptake (−2.5±7.7 mL per 100 g per minute, P=0.30, 95% CI=−7.7 to 2.7). The absence of significant change in CBF with a 10 to 15 mm Hg reduction in MAP within the normal autoregulatory range demonstrates that there is neither a generalized nor local defect of autoregulation in AD.


2001 ◽  
Vol 12 (2) ◽  
pp. 89-97 ◽  
Author(s):  
Flavio Nobili ◽  
Francesco Copello ◽  
Ferdinando Buffoni ◽  
Paolo Vitali ◽  
Nicola Girtler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document