A study on shape of electromagnetic guideway for continuous steel plates by analysis of multi-body dynamics

2020 ◽  
Vol 64 (1-4) ◽  
pp. 1421-1429
Author(s):  
Yasuhiro Narawa ◽  
Sora Ishihara ◽  
Ryo Yamaguchi ◽  
Takahiko Bessho ◽  
Xiaojun Liu ◽  
...  

To obtain the static shape of the continuous steel plate and vibration characteristic, we performed the analysis of the multi-body dynamics in which the continuous steel plate was discretized in many solid bodies. The shape of the steel plate obtained by the measurement experiment was agreement with the static shape of the steel plate obtained by the analysis. Then, dynamical analysis was performed when white noise input to the steel plate. It was confirmed that the vibration could be suppressed when the electromagnets were installed in consideration of the static shape of the steel plate.

2012 ◽  
Vol 605-607 ◽  
pp. 1172-1175
Author(s):  
Li Le He ◽  
Rong Li Li

Based on multi-body dynamics theory and the Lagrange equation, the rigid-flexible coupling dynamical equations of the Coal sampling arm was deduced.The rigid-flexible coupling mode is established by combining with Pro/E, ANSYS and ADAMS, and the model curve is gotten by simulation. The simulation results indicate that rigid-flexible coupling modeling is more actual and it is necessary to consider the flexible deformation of all arms when the sampling arm system is researched. The results in this paper presents the theoretical foundation for the sampling arm dynamical analysis and structure optimization.


2005 ◽  
Author(s):  
Zhu Shaopeng ◽  
Hidekazu Nishimura ◽  
Hirosi Tajima

2021 ◽  
Vol 9 (6) ◽  
pp. 604
Author(s):  
Du-Song Kim ◽  
Hee-Keun Lee ◽  
Woo-Jae Seong ◽  
Kwang-Hyeon Lee ◽  
Hee-Seon Bang

The International Maritime Organization has recently updated the ship emission standards to reduce atmospheric contamination. One technique for reducing emissions involves using liquefied natural gas (LNG). The tanks used for the transport and storage of LNG must have very low thermal expansion and high cryogenic toughness. For excellent cryogenic properties, high-Mn steel with a complete austenitic structure is used to design these tanks. We aim to determine the optimum welding conditions for performing Laser-MIG (Metal Inert Gas) hybrid welding through the MIG leading and laser following processes. A welding speed of 100 cm/min was used for welding a 15 mm thick high-Mn steel plate. The welding performance was evaluated through mechanical property tests (tensile and yield strength, low-temperature impact, hardness) of the welded joints after performing the experiment. As a result, it was confirmed that the tensile strength was slightly less than 818.4 MPa, and the yield strength was 30% higher than base material. The low-temperature impact values were equal to or greater than 58 J at all locations in the weld zone. The hardness test confirmed that the hardness did not exceed 292 HV. The results of this study indicate that it is possible to use laser-MIG hybrid welding on thick high-Mn steel plates.


2012 ◽  
Vol 8 (4) ◽  
pp. 660-664 ◽  
Author(s):  
K. T. Bates ◽  
P. L. Falkingham

Bite mechanics and feeding behaviour in Tyrannosaurus rex are controversial. Some contend that a modest bite mechanically limited T. rex to scavenging, while others argue that high bite forces facilitated a predatory mode of life. We use dynamic musculoskeletal models to simulate maximal biting in T. rex . Models predict that adult T. rex generated sustained bite forces of 35 000–57 000 N at a single posterior tooth, by far the highest bite forces estimated for any terrestrial animal. Scaling analyses suggest that adult T. rex had a strong bite for its body size, and that bite performance increased allometrically during ontogeny. Positive allometry in bite performance during growth may have facilitated an ontogenetic change in feeding behaviour in T. rex , associated with an expansion of prey range in adults to include the largest contemporaneous animals.


Author(s):  
H Lipkin ◽  
J Duffy

The theory of screws was largely developed by Sir Robert Stawell Ball over 100 years ago to investigate general problems in rigid body mechanics. Nowadays, screw theory is applied in many different but related forms including dual numbers, Plilcker coordinates and Lie algebra. An overview of these methodologies is presented along with a perspective on Ball. Screw theory has re-emerged after a hiatus to become an important tool in robot mechanics, mechanical design, computational geometry and multi-body dynamics.


2014 ◽  
Vol 496-500 ◽  
pp. 392-395 ◽  
Author(s):  
Tao Zhang ◽  
Hua Xing Hou ◽  
Jun Ping Chen

The influence of Ti/N ratio on the effective boron and mechanical properties was investigated by analyzing data from low carbon boron alloyed bainitic steel plates. The result shows Ti/N ratio varies with effective boron value. Less than 50% effective boron was obtained when Ti/N ratio is below 3.3, nearly 90% effective boron is obtained when ratio Ti/N is more than 4; Adding enough Titanium is an effective and economic way to improve qualified ratio of bainitic steel plate. The Ti content between 0.010% and 0.030% does not have obvious effect on the toughness of the bainitic steel;


2014 ◽  
Author(s):  
Michael S. Barton ◽  
David Corson ◽  
John Quigley ◽  
Babak Emami ◽  
Tanuj Kush

Sign in / Sign up

Export Citation Format

Share Document