Multiple-attribute decision making method based on power generalized maclaurin symmetric mean operators under normal wiggly hesitant fuzzy environment

2021 ◽  
pp. 1-26
Author(s):  
Peide Liu ◽  
Pei Zhang

A normal wiggly hesitant fuzzy set is a very useful tool to mine the potential uncertain information given by decision makers, which is considered as an extension of hesitant fuzzy set and can improve the effectiveness of decision making. Power average operator can relieve the impact on decision result of unreasonable data, and the generalized Maclaurin symmetric mean operator (GMSM) is an extension of Maclaurin symmetric mean operator with wider range of applications, which can consider the relationship among decision attributes. By integrating the advantages of them, in this paper, we develop the normal wiggly hesitant fuzzy power GMSM (NWHFPGMSM) operator and its weighted form based on the distance measure of two normal wiggly hesitant fuzzy elements, then we further discuss their properties and some special cases. Thus, a new multi-attribute decision making method based on the NWHFPGMSM operator under normal wiggly hesitant fuzzy environment is proposed. Finally, we select some examples to illustrate the effectiveness and superiority of the proposed method in this paper through comparison and analysis with other methods.

2021 ◽  
pp. 1-12
Author(s):  
Muhammad Naeem ◽  
Muhammad Ali Khan ◽  
Saleem Abdullah ◽  
Muhammad Qiyas ◽  
Saifullah Khan

Probabilistic hesitant fuzzy Set (PHFs) is the most powerful and comprehensive idea to support more complexity than developed fuzzy set (FS) frameworks. In this paper, it can explain a novel, improved TOPSIS-based method for multi-criteria group decision-making (MCGDM) problem through the Probabilistic hesitant fuzzy environment, in which the weights of both experts and criteria are completely unknown. Firstly, we discuss the concept of PHFs, score functions and the basic operating laws of PHFs. In fact, to compute the unknown weight information, the generalized distance measure for PHFs was defined based on the Probabilistic hesitant fuzzy entropy measure. Second, MCGDM will be presented with the PHF information-based decision-making process.


2015 ◽  
Vol 24 (1) ◽  
pp. 23-36 ◽  
Author(s):  
Jun Ye

AbstractOn the basis of the combination of single-valued neutrosophic sets and hesitant fuzzy sets, this article proposes a single-valued neutrosophic hesitant fuzzy set (SVNHFS) as a further generalization of the concepts of fuzzy set, intuitionistic fuzzy set, single-valued neutrosophic set, hesitant fuzzy set, and dual hesitant fuzzy set. Then, we introduce the basic operational relations and cosine measure function of SVNHFSs. Also, we develop a single-valued neutrosophic hesitant fuzzy weighted averaging (SVNHFWA) operator and a single-valued neutrosophic hesitant fuzzy weighted geometric (SVNHFWG) operator and investigate their properties. Furthermore, a multiple-attribute decision-making method is established on the basis of the SVNHFWA and SVNHFWG operators and the cosine measure under a single-valued neutrosophic hesitant fuzzy environment. Finally, an illustrative example of investment alternatives is given to demonstrate the application and effectiveness of the developed approach.


Symmetry ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1058 ◽  
Author(s):  
Muhammad Akram ◽  
Sumera Naz ◽  
Florentin Smarandache

With the development of the social economy and enlarged volume of information, the application of multiple-attribute decision-making (MADM) has become increasingly complex, uncertain, and obscure. As a further generalization of hesitant fuzzy set (HFS), simplified neutrosophic hesitant fuzzy set (SNHFS) is an efficient tool to process the vague information and contains the ideas of a single-valued neutrosophic hesitant fuzzy set (SVNHFS) and an interval neutrosophic hesitant fuzzy set (INHFS). In this paper, we propose a decision-making approach based on the maximizing deviation method and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) to solve the MADM problems, in which the attribute weight information is incomplete, and the decision information is expressed in simplified neutrosophic hesitant fuzzy elements. Firstly, we inaugurate an optimization model on the basis of maximizing deviation method, which is useful to determine the attribute weights. Secondly, using the idea of the TOPSIS, we determine the relative closeness coefficient of each alternative and based on which we rank the considered alternatives to select the optimal one(s). Finally, we use a numerical example to show the detailed implementation procedure and effectiveness of our method in solving MADM problems under simplified neutrosophic hesitant fuzzy environment.


2018 ◽  
Vol 24 (4) ◽  
pp. 1533-1559 ◽  
Author(s):  
Peide Liu ◽  
Weiqiao Liu

The Maclaurin symmetric mean (MSM) can capture the interrelationship among the multi-input arguments and it also can generalize most of the existing operators. Now MSM has been extended to intuitionistic fuzzy sets (IFSs) which can easily express the vague information. However, the operational rules of IFSs used in the extended MSM operator didn’t consider the interaction between the membership function and non-membership function, so there are some weaknesses. In this paper, in order to combine the advantages of the MSM and interaction operational rules of IFSs, we propose the intuitionistic fuzzy interaction Maclaurin symmetric mean (IFIMSM) operator, the intuitionistic fuzzy weighted interaction Maclaurin symmetric mean (IFWIMSM) operator, respectively. Furthermore, we research some desirable properties and some special cases of them. Further, we develop a new method to deal with some multi-attribute group decision-making (MAGDM) problems under intuitionistic fuzzy environment based on these operators. Finally, an illustrative example is given to testify the availability of the developed method by comparing with the other existing methods.


2019 ◽  
Vol 7 (3) ◽  
pp. 227-256
Author(s):  
Chao Jiang ◽  
Shenqing Jiang ◽  
Jianlan Chen

AbstractAs an generalization of hesitant fuzzy set, interval-valued hesitant fuzzy set and dual hesitant fuzzy set, interval-valued dual hesitant fuzzy set has been proposed and applied in multiple attribute decision making. Hamacher t-norm and t-conorm is an generalization of algebraic and Einstein t-norms and t-conorms. In order to combine interval-valued dual hesitant fuzzy aggregation operators with Hamacher t-norm and t-conorm. We first introduced some new Hamacher operation rules for interval-valued dual hesitant fuzzy elements. Then, several interval-valued dual hesitant fuzzy Hamacher aggregation operators are presented, some desirable properties and their special cases are studied. Further, a new multiple attribute decision making method with these operators is given, and an numerical example is provided to demonstrate that the developed approach is both valid and practical.


2016 ◽  
Vol 13 (10) ◽  
pp. 7280-7284 ◽  
Author(s):  
Xiaoli Liang

The Maclaurin symmetric mean (MSM) was originally introduced by Maclaurin. The prominent characteristic of the MSM is that it can capture the interrelationship among the multi-input arguments. However, the researches on MSM are very rare, especially in fuzzy decision making. In this paper, we investigate the MSM operator and extend the MSM operator to interval-valued intuitionistic fuzzy environment and develop the interval-valued intuitionistic fuzzy Maclaurin symmetric mean (IVIFMSM) operator. Some desirable properties and special cases of IVIFMSM operator are discussed in detail. Based on IVIFMSM operator, an approach to multiple attribute decision making problems with interval-valued intuitionistic fuzzy information is developed. Finally, an illustrative example for online advertising publisher evaluation is given to verify the developed approach and to demonstrate its practicality and effectiveness.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Shenqing Jiang ◽  
Wei He ◽  
Fangfang Qin ◽  
Qingqing Cheng

In this paper, we focus on new methods to deal with multiple attribute group decision-making (MAGDM) problems and a new comparison law of interval-valued dual hesitant fuzzy elements (IVDHFEs). More explicitly, the interval-valued dual hesitant fuzzy 2nd-order central polymerization degree (IVDHFCP2) function is introduced, for the case that score values of different IVDHFEs are identical. This function can further compare different IVDHFEs. Then, we develop a series of interval-valued dual hesitant fuzzy power Heronian aggregation operators, i.e., the interval-valued dual hesitant fuzzy power Heronian mean (IVDHFPHM) operator, the interval-valued dual hesitant fuzzy power geometric Heronian mean (IVDHFPGHM) operator, and their weighted forms. Some desirable properties and their special cases are discussed. These proposed operators can simultaneously reflect the interrelationship of aggregated arguments and reduce the influence of unreasonable evaluation values. Finally, two approaches for interval-valued dual hesitant fuzzy MAGDM with known or unknown weight information are presented. An illustrative example and comparative studies are given to verify the advantages of our methods. A sensitivity analysis of the decision results is analyzed with different parameters.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Min Xue ◽  
Xiaoan Tang ◽  
Nanping Feng

Bidimensional dual hesitant fuzzy (BDHF) set is developed to present preferences of a decision maker or an expert, which is more objective than existing fuzzy sets such as Atanassov’s intuitionistic fuzzy set, hesitant fuzzy set, and dual hesitant fuzzy set. Then, after investigating some distance measures, we define a new generalized distance measure between two BDHF elements with parameterλfor the sake of overcoming some drawbacks in existing distance measures. Covering all possible values of parameterλ, a new approach is designed to calculate the generalized distance measure between two BDHF elements. In order to address complex multiple attribute decision analysis (MADA) problems, an extension of fuzzy VIKOR method in BDHF context is proposed in this paper. In VIKOR method for MADA problems, weight of each attribute indicates its relative importance. To obtain weights of attributes objectively, a new entropy measure with BDHF information is developed to create weight of each attribute. Finally, an evaluation problem of performance of people’s livelihood project in several regions is analyzed by the proposed VIKOR method to demonstrate its applicability and validity.


2018 ◽  
Vol 29 (1) ◽  
pp. 154-171 ◽  
Author(s):  
Muhammad Sajjad Ali Khan ◽  
Saleem Abdullah ◽  
Asad Ali ◽  
Khaista Rahman

Abstract In this paper, we introduce the concept of the Pythagorean hesitant fuzzy set (PHFS), which is the generalization of the intuitionistic hesitant fuzzy set under the restriction that the square sum of its membership degrees is ≤1. In decision making with PHFSs, aggregation operators play a key role because they can be used to synthesize multidimensional evaluation values represented as Pythagorean hesitant fuzzy values into collective values. Under PHFS environments, Pythagorean hesitant fuzzy ordered weighted averaging and Pythagorean fuzzy ordered weighted geometric operators are used to aggregate the Pythagorean hesitant fuzzy values. The main advantage of these operators is that they provide more accurate and valuable results. Furthermore, these operators are applied to decision-making problems in which experts provide their preferences in the Pythagorean hesitant fuzzy environment to show the validity, practicality, and effectiveness of the new approach. Finally, we compare the proposed approach to the existing methods.


2019 ◽  
Vol 9 (6) ◽  
pp. 1232 ◽  
Author(s):  
Zia Bashir ◽  
Yasir Bashir ◽  
Tabasam Rashid ◽  
Jawad Ali ◽  
Wei Gao

Making decisions are very common in the modern socio-economic environments. However, with the increasing complexity of the social, today’s decision makers (DMs) face such problems in which they hesitate and irresolute to provide their views. To cope with these uncertainties, many generalizations of fuzzy sets are designed, among them dual hesitant fuzzy set (DHFS) is quite resourceful and efficient in solving problems of a more vague nature. In this article, a novel concept called proportional dual hesitant fuzzy set (PDHFS) is proposed to further improve DHFS. The PDHFS is a flexible tool composed of some possible membership values and some possible non-membership values along with their associated proportions. In the theme of PDHFS, the proportions of membership values and non-membership values are considered to be independent. Some basic operations, properties, distance measure and comparison method are studied for the proposed set. Thereafter, a novel approach based on PDHFSs is developed to solve problems for multi-attribute group decision-making (MAGDM) in a fuzzy situation. It is totally different from the traditional approach. Finally, a practical example is given in order to elaborate the proposed method for the selection of the best alternative and detailed comparative analysis is given in order to validate the practicality.


Sign in / Sign up

Export Citation Format

Share Document